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Abstract

Both magnetic materials and light have always played a predominant role in
information technologies, and continue to do so as we move into the realm of
quantum technologies. In this course, we review the basics of magnetism and
quantum mechanics, before going into more advanced subjects. Magnetism is
intrinsically quantum mechanical in nature, and magnetic ordering can only be
explained by the use of quantum theory. We will go over the interactions and the
resulting Hamiltonian that governs magnetic phenomena, and discuss its elementary
excitations, denominated magnons. After that we will study magneto-optical effects
and derive the classical Faraday effect. We will then move on to the quantization
of the electric field and the basics of optical cavities. This will allow us to
understand a topic of current research denominated Cavity Optomagnonics.

This book is based on the notes written for the course I taught in the Summer
Semester 2018 at the Friedrich-Alexander Universität in Erlangen. It is intended for
Master or advanced Bachelor students. Basic knowledge of quantum mechanics,
electromagnetism, and solid state at the bachelor level is assumed. Each section is
followed by a couple of simple exercises which should serve as to “fill in the
blanks” of what has been derived and a couple of checkpoints for the main concepts
developed.

vii



Chapter 1
Electromagnetism

The history of magnetism is ancient: just to give an example, the magnetic com-
pass was invented in China more than 2000 years ago. The fact that magnetism is
intrinsically connected to moving electric charges (and not to “magnetic charges”),
however, was not discovered until much later. In the year 1820, Oersted experimen-
tally demonstrated that a current-carrying wire had an effect on the orientation of a
magnetic compass needle placed in its proximity. In the following few years, Ampere
realized that a small current loop generates a magnetic field which is equivalent to
that of a small magnet, and speculated that all magnetic fields are caused by charges
in motion. In the next few sections, we will review these concepts and the basics of
magnetostatics.

1.1 Basic Magnetostatics

As the name indicates, magnetostatics deals with magnetic fields that are constant in
time. The condition for that is a steady-state current, in which both the charge density
ρ and the current density j = I/As (As cross-sectional area) are independent of time

∂ρ

∂t
= 0 (1.1.1)

∂j
∂t

= 0 . (1.1.2)

From the continuity equation

∇ · j + ∂ρ

∂t
= 0, (1.1.3)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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Fig. 1.1 The magnetic induction generated by a current I can be calculated using Biot–Savart’s
law, see Eq.1.1.6. Ampere’s law (see Eq.1.1.7) is always valid, but useful to calculate the B fields
only for cases of particular symmetry, e.g., an infinite straight wire

we moreover obtain
∇ · j = 0 . (1.1.4)

In these notes, we will call magnetic induction to B and magnetic field to H.1 In
free space, these two fields are related by

B = μ0H (1.1.5)

being μ0 = 4π × 10−7NA−2 the permeability of free space. We will use the SI units
system throughout these notes, and thereforeB is measured in Teslas (T = V.s.m−2)
and H in Amperes per meter (A.m−1).

The magnetic induction at point r due to a current loop can be calculated using
the Biot–Savart law

dB = μ0 I

4πr2
d� × r

r
, (1.1.6)

where d� points in the direction of the current I , see Fig. 1.1. Equivalent to the
Biot–Savart law is Ampere’s law, which reads

∮
C
B · ds = μ0 I, (1.1.7)

where I is the current enclosed by the closed loop C, see Fig. 1.1. Ampere’s law is
general, but it is useful to calculate magnetic fields only in cases of high symmetry,
for example, the magnetic field generated by an infinite straight wire. Using Stoke’s
theorem, we can put Ampere’s law in differential form

∇ × B = μ0j . (1.1.8)

1Some authors call instead B the magnetic field and H the auxiliary field.
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Ampere’s law together with the absence of magnetic monopoles condition

∇ · B = 0 (1.1.9)

constitute theMaxwell equations for magnetostatics. These equations give us indeed
time-independent magnetic fields, and if we compare the magnetostatic equations
with the full microscopic Maxwell equations

∇ · B = 0 (1.1.10)

∇ · E = ρ

ε0
(1.1.11)

∇ × E = −∂B
∂t

(1.1.12)

∇ × B = μ0

(
j + ε0

∂E
∂t

)
(1.1.13)

(with ε0 = 8.85 × 10−12 Fm−1 the vacuum permittivity) we see that we have, more-
over, decoupled the magnetic and electric fields.

Check Points

• What is the magnetostatic condition?
• Write the magnetostatic Maxwell equations.

1.2 Magnetic Moment

The magnetic moment of a current loop is defined as

m = I An̂ , (1.2.1)

where A is the area enclosed by the loop and n̂ is the normal to the surface, with its
direction defined from the circulating current by the right-hand rule, see Fig. 1.2.m
defines a magnetic dipole in the limit of A → 0 but finite moment.

Using Eq.1.1.6, we can calculate the magnetic induction generated by a small
current loop of radius R

B(r) = μ0 I

4π

∫
d�′ × �r

�r3
(1.2.2)

= −μ0 I

4π

∫
d�′ × ∇

(
1

�r

)

with �r = r − r′ (see Fig. 1.3). From Eq.1.1.9, we know we can define a vector
potential A(r) such that B(r) = ∇ × A(r). By a simple manipulation of Eq.1.2.2,
one can show that in the far-field limit (�r � R),
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n̂
A

N

S

Fig. 1.2 Magnetic dipole: the magnetic field induced by a small current loop is equivalent to that
of a small magnet

Fig. 1.3 Magnetic induction
due to a small circular
current loop: we use
Biot–Savart to calculate the
B field. Seen from “far
away”, it is the field of a
magnetic dipole

̂z

I

r

r′

Δr = r − r′

R

d�′

A(r) = μ0

4π
m × r̂

r2
(1.2.3)

B(r) = μ0

4π

3(m · r)r − r2m
r5

, (1.2.4)

which is the magnetic induction generated by a magnetic dipole. More generally, for
an arbitrary current density distribution j(r′), one can define [1, 2]

m = 1

2

∫
d3r′ [r′ × j(r′)

]
(1.2.5)

and Eq.1.2.3 is the lowest nonvanishing term in a multipole expansion of the vector
potential (in the Coulomb gauge, ∇ · A = 0)

A(r) = μ0

4π

∫
d3r′ j(r′)

|r − r′| . (1.2.6)
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The energy of a magnetic dipole in a magnetic field is given by

EZ = −m · B (1.2.7)

and therefore is minimized for m ‖ B. This is called the Zeeman Energy.

1. Exercise: derive Eqs.1.2.3 and 1.2.4 (tip: use the “chain rule” and a multipole
expansion).

2. Exercise: show that Eq.1.2.1 follows from1.2.5 (tip: 1-D Delta-function dis-
tributions have units of 1/length).

Check Points

• How do you show the equivalence between the magnetic field of a small current
loop and that of a small magnet? A conceptual explanation suffices.

1.3 Orbital Angular Momentum

The magnetic moment m can be related to angular momentum. In order to do this,
we consider the limit of one electron e (with negative charge −e) orbiting around a
fixed nucleus, see Fig. 1.4. Note that here we get the first indication that magnetism
is a purely quantum effect: stable orbits like that are not allowed classically, and
we need quantum mechanics to justify the stability of atoms. Our argument here is
therefore a semiclassical one. The average current due to this single electron is

I = − e

T
= −eω

2π
, (1.3.1)

where T is one period of revolution. The electron also possesses orbital angular
momentum L = mer × v. Measured from the center of the orbit,

L = meR
2 �ω (1.3.2)

and using Eq.1.2.1, we obtain

m = − e

2me
L . (1.3.3)

Therefore, we have linked the magnetic moment of a moving charge to its orbital
angular momentum. The coefficient of proportionality is called the gyromagnetic
ratio

γL = − e

2me
, (1.3.4)

which is negative due to the negative charge of the electron. Hence, in this case
the magnetic moment and angular momentum are antiparallel. In solids, electrons
are the primary source of magnetism due to their small mass compared to that of
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Fig. 1.4 Semiclassical
picture used to calculate the
orbital angular momentum of
an electron -

v

r

+
R

e−êz

êx

êy

the nucleus. Since mp ≈ 103me, the gyromagnetic ratio for the nucleus is strongly
suppressed with respect to the electronic one.

Check Points

• What is the gyromagnetic ratio?
• Why is the gyromagnetic ratio of the nucleus suppressed with respect to the elec-
tronic one?

1.4 Spin Angular Momentum

Although we performed a classical calculation, the result obtained for the gyromag-
netic ratio in Eq.1.3.4 is consistent with the quantum mechanical result. We know,
however, that the electron posses an intrinsic angular momentum, that is, the spin S.
The total angular momentum of the electron is therefore given by

J = L + S . (1.4.1)

The spin has no classical analog and the coefficient of proportionality γS between
magnetic moment and spin

mS = γSS (1.4.2)

needs to be calculated quantummechanically via theDirac equation (see, e.g., Chap. 2
of Ref. [3]). The result is

γS ≈ − e

m
= 2γL , (1.4.3)

where the approximate symbol indicates that there are relativistic corrections (also
contained in the Dirac equation!) to this expression. The γS value agrees with exper-
imental observations.
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Fig. 1.5 A magnetic
moment in a B field
experiences a torque
T = m × B. Remember: for
an electron, L and m point in
opposite directions

B

L

mL

θ

�τ

L sin θ

êθ

êϕ

êz

The total magnetic moment of the electron is therefore given by

mTOT ≈ γL (L + 2S) , (1.4.4)

and hence is not simply proportional to the total angular momentum! To understand
the relation between mTOT and J, given by the Landé factor, we need to resort to
quantum mechanics and the operator representation of angular momentum. We will
do that in the next chapter, where we discuss the atomic origins of magnetism.

Check Points

• What is the relation between the magnetic moment of an electron and the angular
momentum operators?

1.5 Magnetic Moment in a Magnetic Field

A magnetic moment in a magnetic field experiences a torque

T = m × B . (1.5.1)

Therefore, the classical equation of motion for the magnetic dipole (considering for
the moment only the orbital angular momentum) is

dL
dt

= m × B = γLL × B . (1.5.2)

Using the geometry depicted in Fig. 1.6, we obtain
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Fig. 1.6 Coordinates used
for solving the equation of
motion Eq.1.5.2 viewed
“from above”, in a plane
perpendicular to B

êz

L
sin

θ

êϕ

�τ

ϕ

L(t)

L̇ = L sin θϕ̇eφ (1.5.3)

γLL × B = |γL|LB sin θeφ . (1.5.4)

Hence, the magnetic moment precesses around B at a frequency

ωL = ϕ̇ = |γLB|, (1.5.5)

which is denominated the Larmor frequency. Therefore, the angular momentum will
precess around the B field at a fixed angle θ and with constant angular frequency ωL.

This is consistent with the energy expression defined in Eq.1.2.7. The work per
unit time performed by the torque is given by the usual expression for the power

dW

dt
= T · �ω, (1.5.6)

where the angular velocity vector is perpendicular to the plane of rotation and its
direction is given by the right-hand rule. We see therefore that there is no power
transfer in the Larmor precession, since ωLêz · T = 0. There is, however, an energy
cost if we want to change the angle θ of precession, since the resultant angular
velocity θ̇eϕ is collinear with the torque. Using (for simplicity we defined now θ as
the angle between m and B, see Fig. 1.7)

T = −mB sin θeϕ

�ωθ = −θ̇eϕ, (1.5.7)

we find

T θ̇ = −mB sin θ
dθ

dt
(1.5.8)
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Fig. 1.7 Coordinate system
used to obtain Eq.1.5.9

B

mL
θ

êθ

êϕ

êz

�τ = mL ×B

and therefore the work exerted to rotate m up to an angle θ is (up to a constant)

W = −
∫

mB sin θdθ = m · B = −EZ . (1.5.9)

We can therefore take the Zeeman energy EZ as the potential energy associated with
the necessary work required to rotate the dipolemwith respect to an externalB field.

We will see equations of motion in the form of Eq.1.5.2 reappearing throughout
this course, even as we treat the angular momenta as quantum operators. The reason
is that, even though the total magnetic momentmTOT is not proportional to the total
angular momentum J (see Eq.1.4.4), their quantum mechanical expectation values
are proportional to each other through the Landé factor g. We will see this more
formally when we start dealing with the quantum mechanical representation of the
angular momenta. For now, we assume that mTOT and J are related by

mTOT · J = gγLJ · J (1.5.10)

from which we can obtain a classical expression for g, by replacing Eqs. 1.4.4 and
1.4.1 into 1.5.10 and noting that

L · S = 1

2

(
J 2 − L2 − S2

)

from J 2 = (L + S)2. One obtains

gcl = 3

2
+ S2 − L2

2J 2
, (1.5.11)

where the superscript indicates this is a classical approximation for g, which coincides
with the quantum mechanical result in the limit J 2, S2, and L2 large [4].
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Check Points

• Write the equation of motion for an angular momentum in the presence of a
magnetic field.

• What is the dynamics of an angular momentum in the presence of amagnetic field?
• What is the Larmor frequency?

1.6 Magnetization

Inside a material, the magnetic induction B indicates the response of the material to
the appliedmagnetic fieldH. Both vector fields are related through themagnetization
in the sample

B = μ0 (H + M) , (1.6.1)

where the magnetization is defined as the average magnetic moment per unit volume,

M(r) = 〈m〉V
V

, (1.6.2)

and where the average indicates that we average over all atomic magnetic moments
in a small volume V around position r.2 In this way, a smooth vectorial function
of position is obtained. From Eq.1.6.1, we see that the magnetization has the same
units as the magnetic field H (A.m−1). In Eq.1.6.1, both B and H indicate the fields
inside the material, and hence H contains also the demagnetizing fields (that is, it is
not just the external applied field). We will see more on demagnetization fields in
the next section.

The response to the magnetic field of the magnetization and field induction are
characterized by the magnetic susceptibility χ and the permeability μ, respectively

M = χH (1.6.3)

B = μH , (1.6.4)

where we have written the simplest expressions for the case in which all fields
are collinear, static (that is, independent of time), and homogeneous in space (q =
ω = 0). In general, however, the response functions are tensorial quantities, e.g.,
Mi = ∑

j χi j Hj , and depend on frequency ω and momentum q. Note that from
Eq.1.6.1, we obtain

μr = μ

μ0
= 1 + χ (1.6.5)

again in the simple collinear case. μr is the relative permeability, is dimensionless,
and equals to unity in free space.

2We average over a “microscopically large but macroscopically small” volume V .
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The quantities defined in Eqs. 1.6.3 and 1.6.4 are still allowed to depend on tem-
perature T and magnetic fieldH. We will now consider qualitatively the dependence
onH. For linearmaterials,χ andμ are independent ofH. A linear material with nega-
tive constant susceptibility is diamagnetic,whereas a positive susceptibility indicates
either paramagnetism (no magnetic order) or antiferromagnetism (magnetic order
with magnetic moments anti-aligned and zero total magnetization). In these cases,
the magnetization is finite only in the presence of a magnetic field. On the other hand,
if χ and μ depend on H, the relations Eqs. 1.6.3 and 1.6.4 are nonlinear. This is the
case for magnetically ordered states with net magnetization, namely, ferromagnets
(magnetic moments aligned and pointing in the same direction) and ferrimagnets
(magnetic moments anti-aligned but of different magnitudes, so that there is a net
magnetization). In these materials, the magnetization increases nonlinearly with the
appliedfield and saturateswhen all themagneticmoments are aligned.Whendecreas-
ing the magnetic field, there is a remanent, finite magnetization at zero field. This
process is called hysteresis and it is used to magnetize materials. As we learned in the
previous section, the magnetic moment, and hence the magnetic characteristics of a
material, are related to the total angular momentum of the electrons, and therefore
on the atomic structure. We will learn more about this in the next chapter.

Check Points

• What is the relation between magnetic moment and magnetization?

1.7 Magnetostatic Maxwell Equations in Matter

To calculate the magnetic dipole moment m from Eq.1.2.5, we have to know the
microscopic current density. In general, however, we are not interested in micro-
scopic, fast fluctuations. We already saw an example in which we considered the
average current I generated by one orbiting electron, to obtain semiclassically the
gyromagnetic ratio γL in Sec.1.3. We have also defined the magnetization M as a
macroscopic quantity which entails the average density of the microscopic m. In a
material, in general, we have access to the magnetization, which is due to bound
microscopic currents, and to the macroscopic current density due to free charges,
which we will denominate jF. This motivates defining a macroscopic vector poten-
tialA in terms of these two macroscopic quantities, and not the microscopic currents
as in Eq.1.2.6

A(r) = μ0

4π

∫
d3r′

[
jF(r′)

|r − r′| + M(r′) × (r − r′)
|r − r′|3

]
. (1.7.1)

Note that this is simply rewriting Eq.1.2.6, separating the bound- and free-current
contributions. The bound-current contribution, the second term inEq.1.7.1, iswritten
in terms of the magnetization and is equivalent to an averaged Eq.1.2.3.
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Equation1.7.1 allows us to define an effective current density associated with the
magnetization, by noting that [1]

∫
V
d3r′M(r′) × (r − r′)

|r − r′|3 =
∫
V
d3r′M(r′) × ∇′

(
1

|r − r′|
)

(1.7.2)

=
∫
V
d3r′∇′ × M(r′)

(
1

|r − r′|
)

+
∮
S

M(r′) × da′

|r − r′| .

We can therefore define an effective bound volume current density

jB = ∇ × M (1.7.3)

and an effective bound surface current density

KB = M × n̂, (1.7.4)

where the surface element is defined as da = dan̂. In the bulk, for a well-behaved
magnetization function, the surface integral vanishes and we obtain

A(r) = μ0

4π

∫
d3r′

[
jF(r′)

|r − r′| + jB(r′)
|r − r′|

]
. (1.7.5)

The surface current KB enters usually through boundary conditions at interfaces.
If we now go back to Ampere’s Eq.1.1.8 and separate the total current density

into free and bound contributions j = jF + jB, we obtain

∇ × B = μ0 (jF + ∇ × M) (1.7.6)

which defines the magnetic field H

H = 1

μ0
B − M (1.7.7)

such that
∇ × H = jF . (1.7.8)

Therefore, the magnetic field H takes into account in an average way the bound
currents, and has as its only source the free currents. Equation1.7.8 is equivalent to
Eq.1.1.8, just rewritten in a more convenient form for macroscopic magnetostatics
in matter. Note that H is, on the contrary to B, not divergence-free:

∇ · H = −∇ · M . (1.7.9)

The magnetostatic Maxwell equations in matter (also known as “macroscopic”)
therefore read
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∇ · B = 0

∇ × H = jF (1.7.10)

and have to be complemented by the constitutive equation B = μH in linear media
(taking μ as a constant, independent of H) or B = F(H) in nonlinear (e.g., ferro-
magnetic) media, where F is a characteristic function of the material.

We finish this section by stating the magnetostatic boundary conditions at an
interface between two different media 1 and 2

(B2 − B1) · n̂ = 0 (1.7.11)

n̂ × (H2 − H1) = KF, (1.7.12)

where KF is a free surface current density (usually 0).

1. Exercise: Prove Eq.1.7.2.

Check Points

• What is the meaning of the magnetic field H?
• What are the magnetostatic Maxwell equations in matter?

1.8 Demagnetizing Fields

A crucial difference between magnetic and electric fields is the lack of free mag-
netic charges or monopoles.3 They are, however, a useful mathematical construction
in some cases, for example, to calculate the so-called demagnetization fields. In
finite systems, we can consider the magnetization as dropping to zero abruptly at the
boundary of the material, giving rise to an accumulated “magnetic charge density”
at the surface which acts as an extra source of magnetic fields inside of the material.
These fields in general oppose to an externally applied magnetic field and are there-
fore dubbed demagnetizing fields. A surface magnetic charge density is energetically
costly, and for finite magnetic systems at the microscale, it can determine the spa-
tial dependence of the magnetically ordered ground state, giving rise to magnetic
textures.

If we consider the special case of no free currents, jF = 0, Eqs. 1.7.10 imply that
we can define a magnetic scalar potential φM such that

H = −∇φM (1.8.1)

3Magnetic monopoles, if they exist, have evaded experimental detection so far. They can, however,
emerge as effective quasiparticles in condensed matter systems, and have been detected in materials
which behave magnetically as a “spin ice” [5–7].
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Fig. 1.8 Coordinate system
for the uniformly magnetized
sphere problem

êθ

êz
n̂

M

and using Eq.1.7.9 we obtain a Poisson equation

∇2φM = −∇ · M (1.8.2)

with solution

φM(r) = − 1

4π

∫
V
d3r′ ∇ · M(r′)

|r − r′| + 1

4π

∮
S
da′ n̂′ · M(r′)

|r − r′| . (1.8.3)

Analogous to the case of the vector potential in Eq.1.7.2, this allows us to define an
effective magnetic charge density

ρM = −∇ · M (1.8.4)

and an effective magnetic surface-charge density

σM = M · n̂ . (1.8.5)

Wesee thatρM canonlybefinite for a nonhomogeneousmagnetizationM(r),whereas
a finite σM indicates a discontinuity of M at the chosen surface S.
1. Exercise: Uniformly magnetized sphere

For a ferromagnet at saturation, the magnetization can be considered as given, so
we can in principle calculate the resulting magnetic field for a given geometry using
Eq.1.8.3. We consider here as an example the case of a uniformly magnetized sphere
as depicted in Fig. 1.8.

(a) Choosing êz in the direction of M, we can write M = M0êz . Calculate ρM and
σM and write the Poisson equation for φM.
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(b) Show that the scalar potential inside of the sphere is

φin
M = 1

3
M0z (1.8.6)

and find the magnetic field Hin and magnetic induction Bin inside of the sphere.
(c) The magnetic field Hin inside of the sphere opposes the magnetization and it is

therefore called a demagnetizing field. The proportionality coefficient between
Hin and M is called the demagnetizing factor N . What is the value of N in this
case? Demagnetization factors are geometry dependent and can moreover be
defined only in very special cases with simple geometries.4 Besides the sphere,
one can define demagnetization factors for an infinite plane, an infinite cylinder,
and a spheroid.

(d) Let us assume that now the sphere is placed in an external magnetic field H0.
Using linearity, write the solution for Hin and Bin in this case.

(e) Let us now consider the case that the sphere is not permanently magnetized, but
we now the material has a permeability μ. From the constitutive equation

Bin = μHin , (1.8.7)

obtain the magnetization as a function of the external magnetic field Mμ(H0),
where the notationMμ implies that in this casewe consider themagnetization not
as given, but it depends on the permeability of thematerial. Show thatMμ(0) = 0,
and therefore the obtained expression is not valid for materials with permanent
magnetization.

Check Points

• Which is the origin of the demagnetization factors?

4The demagnetizing fields are always present, but it is only in very simple geometries that one can
describe them with simple numerical factors.



Chapter 2
Atomic Origins of Magnetism

In the previous chapter, we reviewed the basic concepts of magnetism and mag-
netostatics using some semiclassical considerations. In particular, we attributed the
magnetic moment of atoms to “small current loops” and to the angular momentum
of electrons. In this chapter, we will put these concepts into more solid footing with
the help of quantum mechanics.

2.1 Basics of Quantum Mechanics

We first review some basic concepts of quantum mechanics. In quantum mechanics,
we describe a particle of mass m in a potential V by a wavefunction ψ(r, t) which
satisfies the Schrödinger equation

i�
∂ψ(r, t)

∂t
= − �

2

2m
∇2ψ(r, t) + V ψ(r, t) . (2.1.1)

The probability of finding the particle at a time t in a volume element d3r around posi-
tion r is given by |ψ(r, t)|2d3r . If the potential V is independent of time, ψ(r, t) =
ψ(r) f (t) andψ(r) is an eigenfunction of the time-independent Schrödinger equation

− �
2

2m
∇2ψ(r) + V (r)ψ(r) = Eψ(r) (2.1.2)

with energy E . Equivalently, we can write the eigenvalue equation for the Hamilto-
nian in Dirac notation

Ĥ |ψ〉 = E |ψ〉, (2.1.3)
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where the quantum state of the particle is represented by the ket |ψ〉, the respective
wavefunction is ψ(r) = 〈r|ψ〉, and the Hamiltonian operator is

Ĥ = p̂2

2m
+ V (r̂). (2.1.4)

In the position representation, p̂ → −i�∇ so that, for example, 〈r|p̂|ψ〉 =
−i�∇ψ(r).

In general, for any operator Â we can write the eigenvalue equation Â|ψα〉 =
α|ψα〉, where |ψα〉 is an eigenstate with eigenvalue α. For a Hermitian operator,
Â† = Â, α is real and the eigenstates form a basis of the Hilbert space where the
operator acts. This is called an observable. The expectation value for Â if the system
is in the eigenstate |ψα〉 then is simply 〈ψα Â|ψα〉 = α. If we consider a second
operator B̂ acting on the same Hilbert space, it is only possible to find a common
basis of eigenstates of Â and B̂ if and only if the two operators commute: [ Â, B̂] =
Â B̂ − B̂ Â = 0. In this case, the two operators can be measured simultaneously to
(in principle) arbitrary precision. If the operators do not commute, then we run
into the Heisenberg uncertainty principle. The most well-known example is that of
the momentum and position operators, which satisfy [x̂, p̂] = i�. How precise we
measure one of the operators will determine the precision up to which we can know
the value of the other: �x�p ≥ �/2. In general,

�A�B ≥ 1

2

∣
∣
∣〈[ Â, B̂]〉

∣
∣
∣ , (2.1.5)

where �A =
√

〈 Â2〉 − 〈 Â〉2 corresponds to the standard variation of Â and analo-

gously for operator B̂.

2.2 Orbital Angular Momentum in Quantum Mechanics

The orbital angular momentum operator expression in quantum mechanics is inher-
ited from its classical expression, L̂ = r̂ × p̂. In the position representation, it is
given by

L̂ = −i�r × ∇ . (2.2.1)

From this expression, it is easy to verify that the different components of L̂ do not
commute with each other. Instead, one obtains

[L̂ i , L̂ j ] = i�εi jk L̂k , (2.2.2)

where εi jk is the Levi-Civita tensor and the Einstein convention for the implicit
sum or repeated indices has been used. Therefore, it is not possible to measure
simultaneously with arbitrary precision all components of the angular momentum.
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Fig. 2.1 Pictorial
representation of the spatial
quantization of angular
momentum. In this example,
l = 3. L precesses around
the z-axis and has a definite
projection on it that can take
one of the allowed values
−3 ≤ ml ≤ 3. Note that the
maximal quantum
mechanically allowed value
of the projection (3� in this
case) is smaller than the
classically allowed one

êz

êx

êy

L
3�

−2�
−3�

−1�

2�

1�

0

−
√
12�

√
12�

Let us assume we choose to measure L̂ z . In this case, the Heisenberg uncertainity
principle reads

�Lx�L y ≥ �

2
|〈Lz〉| . (2.2.3)

It is, however, possible to find a common basis for L̂2 and one of the angular momen-
tum components, since [L̂2, L̂ i ] = 0. Typically, L̂ z is taken and the respective eigen-
values are labeled by l andm. These are called the quantum numbers. The eigenstates
satisfy

L̂2|ψlml 〉 = �
2l(l + 1)|ψlml 〉

L̂ z|ψlml 〉 = �m|ψlml〉 . (2.2.4)

For the orbital angular momentum, l is an integer and−l ≤ ml ≤ l. These conditions
can be depicted pictorically as in Fig. 2.1. The angular momentum vector has a
magnitude �

√
l(l + 1), and its projection on the z-axis is quantized and takes one of

the possible values �ml . The maximum value of Lz is �l, instead of �
√

l(l + 1) as
one would expect classically. We recover the classical expectation in the limit l 	 1.
The Lx and L y components do not have a definite value and are represented as a
precession of L around the z-axis.

Check Points

• Explain graphically the properties of an angular momentum operator and how it
differs from a classical angular momentum.
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2.3 Hydrogen Atom

For a problem with rotational symmetry, the angular momentum is conserved:
[Ĥ , L̂] = 0. Hence, we can find a basis of eigenstates that are also energy eigen-
states, such that

Ĥ |ψnlm〉 = En|ψnlm〉 . (2.3.1)

The quantum numbers are denominated as principal, azimuthal, and magnetic,
respectively, for n, l, and m. If we ignore spin, we have all the tools to solve the
energy levels and orbitals for the hydrogen atom, in which the electron is subject to
the Coulomb potential

VC(r) = − e2

4πε0r
(2.3.2)

due to the nucleus. Due to the spherical symmetry of the problem, it is convenient
to write the wavefunction in spherical coordinates. From Eq.2.1.2, it can be shown
that

ψnlm(r, θ,φ) = Rnl(r)Ylm(θ,φ).

The principal number n = 1, 2, 3... gives the quantization of energy En ∝ −1/n2.
The Rnl(r) are associated Laguerre functions and determine the radial profile
of the probability distribution for the electron. Ylm(θ,φ) are spherical harmon-
ics, which can also be written in terms of the associated Legendre functions,
Ylm(θ,φ) = Pm

l (cos θ)eimφ. For m = 0, Yl0(θ) = Pl(cos θ) are simply the Legen-
dre polynomials. The azimuthal number l = 0, 1, ..., n − 1 labels the usual s, p, d,
... orbitals. The s orbitals are spherically symmetric, since Y00(θ,φ) = 1/

√
4π. The

higher the azimuthal number, the higher the probability to find the electron further
away from the nucleus, whereas n gives the number of nodes of the wavefunction in
the radial direction.

That the azimuthal quantum number l is quantized was demonstrated experimen-
tally in what we now know as the Zeeman effect. In order to see why, we come back
to the relation between the orbital angular momentum and the magnetic moment. We
can write

mL = μB

√

l(l + 1)

mL · z = −μBml, (2.3.3)

whereμB = �γL is theBohr magneton and the expressions correspond to expectation
values. If the atom is placed in an external magnetic field, there will be an extra
contribution to the energy due to the Zeeman term, see Eq. 1.2.7. We can take the
z-axis to coincide with the magnetic field, hence

EZ = μBml B, (2.3.4)
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and we say that the degeneracy of the l level, originally 2l + 1, is split for all l > 0.
This splitting can be measured in the absorption spectrum of atoms with total spin
angular momentum equal to zero. To add the effect of the spin degree of freedom,
we have, however, first to understand how to combine angular momentum operators
in quantum mechanics.

Check Points

• What are the quantum numbers for the hydrogen atom and what do they tell us?

2.4 Addition of Angular Momentum andMagnetic Moment

The orbital angular momentum is the generator of rotations in position space. In
general, however, we can define an angular momentum simply by its algebra, deter-
mined by the commutation relation Eq.2.2.2. The spin angular momentum generates
rotations in spin space and satisfies

[Ŝi , Ŝ j ] = i�εi jk Ŝk

Ŝ2|s〉 = �
2s(s + 1)|s〉

Ŝz|s〉 = �ms |s〉 .

In contrast to the orbital angular momentum, the spin quantum number s is not
constrained to be an integer, and can take also half-integer values. Fermions (e.g.,
the electron) have half-integer values of spin and bosons integer values. For electrons,
s = 1/2 and ms = ±1/2.

The spin operator commutes with the orbital angular momentum

[Ŝ, L̂] = 0

since they act on different state spaces. One would be therefore tempted to choose
{

Ŝ2, L̂2, L̂ z, Ŝz

}

as a set of commuting observables. Spin and orbital angularmomen-

tum, however, interact via the spin–orbit interaction, a relativistic correction to the
Hamiltonian Eq.2.1.4 which reads

ĤSO = �
2

2m2
ec2

1

r

∂V

∂r
Ŝ · L̂ . (2.4.1)

For an atomic system, V is the Coulomb potential. This correction is usually small,
but it increases with the atomic number. Since Ŝ and L̂ are coupled by Eq.2.4.1,
they are not conserved and they do not commute separately with the Hamiltonian.
The total angular momentum Ĵ = Ŝ + L̂, however, is conserved. We choose there-

fore
{

Ŝ2, L̂2, Ĵ2, Ĵz

}

as a set of commuting observables, and s, l , j , and m j are
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Fig. 2.2 Pictorial depiction
of the precession of
L̂ + 2Ŝ = m̂TOT/γL
around Ĵ

êz

L

êx êy

S

S

J = L+ S

L+ 2S

Jz

our quantum numbers. The change of basis is achieved via the Clebsch–Gordan
coefficients

|sl jm j 〉 =
∑

ms ml

|sl jm j 〉〈smslml |sl jm j 〉 . (2.4.2)

We now have the task of relating the magnetic dipolar moment mTOT to the total
angular momentum operator Ĵ. From Eq. 1.4.4, we know that mTOT is not collinear
with Ĵ, but it is proportional to L̂ + 2Ŝ.We note, however, that the projection m̂TOT · Ĵ
is well defined, since

[L̂ · Ĵ, Ĵ2] = [L̂ · Ĵ, L̂2] = [L̂ · Ĵ, Ŝ2] = [L̂ · Ĵ, Ĵz] = 0

[Ŝ · Ĵ, Ĵ2] = [Ŝ · Ĵ, L̂2] = [Ŝ · Ĵ, Ŝ2] = [Ŝ · Ĵ, Ĵz] = 0 . (2.4.3)

The magnetic moment therefore precesses around Ĵ, as depicted in Fig. 2.2.
The Wigner–Eckart theorem allows us to relate m̂TOT with Ĵ in terms of expecta-

tion values by noting that [8]

γL〈sl jm j |L̂ + 2Ŝ|sl jm ′
j 〉 = γLg(sl j)〈sl jm j |Ĵ|sl jm ′

j 〉 .

Therefore, in the (2 j + 1) degenerate subspace with fixed quantum numbers (s, l, j)
we can think of m̂TOT as being proportional to Ĵ. In the literature, this is sometimes
denoted as “m̂TOT = γLgĴ” in an abuse of notation. The value of g(sl j) we can find
by projecting m̂TOT · Ĵ

〈sl jm j |
(

L̂ + 2Ŝ
)

· Ĵ|sl jm j 〉 = γLg(sl j)〈sl jm j |Ĵ2|sl jm j 〉

and using Eqs. 2.4.3, we obtain the Landé factor

g(s, l, j) = 3

2
+ s(s + 1) − l(l + 1)

2 j ( j + 1)
. (2.4.4)
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We see that this expression coincides with the classical one obtained in Eq. 1.5.11
in the limit of s, l, j 	 1.

Going back to the Zeeman splitting, we see that in general the Zeeman correction
to the atomic energy in the presence of a magnetic field is given by

EZ = μBg(s, l, j)m j B, (2.4.5)

and therefore the Zeeman splitting depends on all the atomic orbital numbers, and
it is not simply μBB. This is denominated the anomalous Zeeman effect since at
the time of the experiments the spin was still not known, and it was not possible to
explain the effect. Note, however, that the normal Zeeman effect can be observed
only for atoms with zero total spin, and therefore the anomalous one is much more
common.

1. Exercise: Prove Eqs. 2.4.3
2. Exercise: Derive Eq. 2.4.4.

Check Points

• How do you relate the magnetic moment of an electron to its total angular momen-
tum? Why?

• What is the Landé factor?

2.5 Generalization to Many Electrons

Generalizing the previous concepts beyond the hydrogen atom/single electron prob-
lem is impossible to do in an exact manner, since the problem turns into a many-
body problem: the many electrons interact not only with the nucleus, but among
themselves. We can, however, make analytical progress by doing some reasonable
approximations. The first one is called the Hartree approximation, in which we con-
sider that each electron moves in an effective central potential Veff(r) generated by
the nucleus plus all the other electrons. The other electrons are said to screen the
potential of the nucleus, since their charge is opposite.

The second approximation concerns the spin–orbit coupling Eq.2.4.1. For all
except the heaviest atoms, the spin–orbit interaction is weak and can be treated
within perturbation theory. In this case, we can first neglect this interaction and con-
sider that L̂i and Ŝi for each electron i are independent. Hence, we can calculate
the total orbital and spin angular momentum simply by summing them separately:
L̂TOT = ∑

i L̂i and ŜTOT = ∑

i Ŝi , and then proceed to calculate the total angu-
lar momentum ĴTOT = L̂TOT + ŜTOT and the corresponding magnetic moment. Ŝ2TOT
has eigenvalues �S(S + 1)with S = ∑

i ms,i and, respectively, L̂2
TOT has eigenvalues

�L(L + 1) with L = ∑

i ml,i . The allowed values of ĴTOT are given by the angular
momentum summation rules: J : |L − S|, |L − S| + 1, ...L + S. This approxima-
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tion is denominated the Russell–Sanders coupling and it gives rise to the well-known
Hund’s rules. To calculate ĴTOT, we need first a prescription to obtain ŜTOT and L̂TOT.

A closed shell means that we have occupied all 2(2l + 1) levels in it, where the
factor of 2 comes for the spin s = ±1. Therefore, both the total orbital and spin
angular momenta of the shell are zero, and hence also the total angular momentum
Ĵ in the shell. The total angular momentum of the atom, and therefore its magnetic
properties, will be determined by the last, partially unoccupied shell. If all shells
are closed (that is, full), then ĴTOT = 0 and the atom is diamagnetic. The Hund
rules tell us how to distribute our n ≤ 2(2l + 1) “leftover” electrons in the last shell.
The total spin ŜTOT we obtain by applying the Pauli principle: since electrons are
fermions, their wavefunction is antisymmetric and two electrons cannot have the
same quantum numbers. Each orbital characterized by l can then be occupied by
only two electrons: one with spin up, and one with spin down. The first Hund rule
tells us tomaximize S, since this will tend to put one electron within each orbital until
half filling, (2l + 1), and then continue with spin down. This minimizes Coulomb
repulsion by putting electrons, in average, as far apart as possible. The second Hund
rule tells us to maximize the orbital angular momentum, once the spin is maximized.
This also minimizes Coulomb repulsion, by making the electrons orbit as far apart as
possible. The third Hund rule sounds more mysterious: if the shell is more than half
filled (n ≥ 2l + 1) then J = L + S, and for a less than half-filled shell (n ≤ 2l + 1),
J = |L − S| . This is actually due to the spin–orbit interaction λL̂TOT · ŜTOT, where
it can be shown that λ’s sign changes between these two configurations. Therefore,
to minimize spin–orbit coupling requires ŜTOT and L̂TOT parallel or antiparallel,
depending on the filling.

To finish this section, we point out that for the heavier elements the Russell–
Sanders coupling prescription is not valid anymore, due to the strong spin–orbit
coupling. For these elements, a different prescription, denominated jj coupling, is
used. There Ĵi for each electron is first calculated, and then the total ĴTOT.

As we mentioned, if all shells are closed, the total angular momentum is zero and
the atom is diamagnetic. Diamagnetism can be understood by the Faraday law: as a
magnetic field is turned on, it induces a change in the orbital motion of the electrons
which opposes the change in magnetic flux. Diamagnetism is usually a weak effect
and it is overshadowed by paramagnetism in atoms with partially unfilled shells.
Once the atoms are ordered in a lattice and form a solid, it can happen that magnetic
order develops as the temperature is lowered. This will depend on the electronic
interactions, as we will see in the next chapter.

Check Points

• What is the Russell–Sanders coupling scheme?



Chapter 3
Magnetism in Solids

In the previous chapter, we showed how to calculate the magnetic moment of an
atom. We saw that the problem is already quite involved even for a single atom if
we go beyond a hydrogen-like one. When atoms come together to form a solid, to
treat the magnetic problem atom per atom is not only impossible but also not correct,
since we have to take into account the binding between the atoms that form the solid,
and what matters is the collective behavior of the material. In a solid, the orbitals
of the constituent atoms overlap to form bands instead of discrete energy levels.
Depending on the character of the orbitals involved in the magnetic response of a
material, we can divide the problem into two big subsets: metals and insulators. In
metals, the orbitals are extended and have a good amount of overlap, so the electrons
aredelocalized and free tomove around the solid. In insulators, the orbitals are narrow
and we talk about localized magnetic moments. Of course, this is an oversimplified
view: there are systems in which both localized and delocalized electrons participate
in magnetism, or in which magnetism and electric conduction are due to different
groups of orbitals. An example is that of heavy fermion systems, which can be
modeled as a Kondo Lattice: a lattice of magnetic impurities embedded in a sea
of free electrons. Itinerant magnetism (that one due to delocalized electrons) and
mixed systems belong to what one calls strongly correlated systems, highly complex
many-body problems in which electron–electron interactions have to be taken into
account. In this course, wewill concentratemostly onmagnetic insulators.Moreover,
to understand magnetic ordering, we have to introduce electronic interactions and
take into account the Pauli principle.
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3.1 The Curie–Weiss Law

Weconsiderfirst a systemof localized, N identical noninteractingmagneticmoments,
and calculate their collective paramagnetic response.1 We can obtain the magnetiza-
tion from the Helmholtz free energy (see, e.g., Ref. [8])

F = −kBT ln Z (3.1.1)

M = −N

V

∂F

∂B
(3.1.2)

where kB is the Boltzmann constant, T is the temperature, and Z is the canonical
partition function for one magnetic moment

Z =
∑

n

e− En
kBT . (3.1.3)

If we consider a magnetic moment with total momentum J , we have 2J + 1 possible
Jz values and

Z =
J∑

Jz=−J

e− 1
kBT gμB Jz B . (3.1.4)

The sum can be performed since it is a geometric one. Putting all together, one finds

M = N

V
gμB JBJ (

μBgJ B

kBT
), (3.1.5)

where

BJ (x) = 2J + 1

2J
coth(

2J + 1

2J
x) − 1

2J
coth(

1

2J
x)

is the Brillouin function. For μBB � kBT this function goes to 1 and the magne-
tization saturates: all momenta are aligned with the B-field. For large temperatures
instead, μBB � kBT , one obtains the inverse-temperature dependence of the mag-
netization known as the Curie law, characterized by the susceptibility

χc = M

H
= N

V

μ0 (gμB)2

3

J (J + 1)

kBT
. (3.1.6)

Experimentally, it is found that this result is good for describing insulating crys-
tals containing rare-earth ions (e.g., Yb, Er), whereas for transition metal ions in an

1As we saw in the last chapter, all atoms present a diamagnetic behavior, but since it is very weak
compared to the paramagnetic response, only atoms with closed shells (e.g., noble gases) present
an overall diamagnetic response. An exception is of course superconducting materials, which can
have a perfect diamagnetic response. This is, however, a collective, macroscopic response due to
the superconducting currents which oppose the change in magnetic flux.
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insulating solid agreement is found only if one takes J = S. This is due to an effect
denominated angular momentum quenching, where effectively L = 0. This quench-
ing is due to crystal fields: since now the atoms are located in a crystalline environ-
ment, rotational symmetry is broken and each atom is located in electric fields due to
the other atoms in the crystal. In the case of rare-earth ions, the magnetic moments
come from f-shells, which are located deep inside the atom and therefore better iso-
lated form crystal fields. For transition metals instead, the magnetic moments come
from the outermost d-shells, which are exposed to the symmetry breaking fields.
These, however, are spatial dependent fields which do not affect directly the spin
degree of freedom. As a consequence of the breaking of spatial rotational invariance,
the orbital angular momentum is not conserved and precesses instead around the
crystal fields, averaging to zero.

The Curie law is followed by all materials with net magnetic momentum for large
enough temperature. For low temperatures, however, in certain materials, magnetic
order develops and there is a deviation from the Curie law in the susceptibility.
Weiss postulated the existence of molecular fields, which are proportional to the
magnetization in the material and are responsible for the magnetic ordering. The
total magnetic field acting on a magnetic moment within this picture is, therefore,
Htot = Hext + λM and from the Curie susceptibility

χc = M

Htot
= M

Hext + λM
= C

T
(3.1.7)

with

C = N

V

μ0 (gμB)2

3

J (J + 1)

kB
(3.1.8)

we obtain

M = CHext

T − λC
(3.1.9)

and therefore the susceptibility in the external field follows the Curie–Weiss law

χW = C

T − λC
. (3.1.10)

We see that for large temperatures this susceptibility follows the Curie inverse law,
but as the temperature approaches a critical temperature TC = λC , χW diverges
indicating a phase transition to the magnetically ordered phase.

Amagnetically ordered phase implies M �= 0 for an external field Bext = 0. From
Eq.3.1.5 we see that, if we do not consider the molecular fields postulated by Weiss,
M(0) = 0. Let us now consider Bext = 0 but the existence of a molecular field
BW = μ0λM . Inserting this field in Eq.3.1.5, we obtain an implicit equation for M :

M = M0BJ (
μBμ0gJλM

kBT
) , (3.1.11)
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Fig. 3.1 Possibility of
spontaneous magnetic order
according to the condition
Eq.3.1.13. For temperatures
lower than the critical
temperature TC , there is a
nontrivial solution of
Eq.3.1.11, indicating
magnetic order with a
spontaneous magnetization
Msp . The inset depicts
schematically the behavior
of the spontaneous
magnetization Msp with
temperature
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where we have defined the saturation magnetization

M0 = N

V
gμB J (3.1.12)

since BJ (x → ∞) = 1. Equation3.1.11 has still a solution M = 0. However, if

[
d(M0BJ )

dM

]

M=0

≥ 1, (3.1.13)

we see that a second solution to the transcendental equation is possible. From

BJ (x → 0) ≈ J + 1

3J
x,

we obtain

Msp = λC
Msp

TC

and therefore TC = λC , in agreement with Eq.3.1.10. The subscript sp indicates
this is a spontaneous magnetization, not induced by an external magnetic field. For
T > TC , Eq. 3.1.13 is not fulfilled and M = 0 is the only solution. This can be seen
graphically in Fig. 3.1.

At the time, the origin of these postulatedmolecular fieldswas not known.Naively,
one could expect the dipole–dipole interaction between the magnetic moments to be
the origin of themagnetic ordering. This energy scale is, however, too small to explain
magnetism at room temperature. The potential energy of one magnetic dipolem2 in
the magnetic field created by another dipole m1, Vpot = −m2 · B1(r) is

Vpot = −m2 · μ0

4πε0

3(m1 · r)r − r2m1

r5
. (3.1.14)
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A quick estimate corresponds to taking the distance between the dipoles as the
interatomic distance, and the dipolar moments simply as Bohr magnetons. Equating
this energy to kBTC results in a critical temperature formagnetic ordering of TC ≈ 1K .
Therefore, dipolar interactions could be responsible magnetic ordering only below
this temperature, which is very low. We know, however, that magnetic ordering at
room temperature is possible. Instead, a rough estimate of the repulsive Coulomb
energy between two electrons gives

Uc

kB
= e2

kB4πε0a2
≈ 105K

which is very large! This could provide us with the necessary energy scale. In the
following section, we will see that magnetic ordering is due to a combination of the
electrostatic energy and a very quantum effect: the Pauli principle.

1. Exercise: Prove Eq.3.1.5.
2. Exercise: estimateTC from the dipole–dipole interaction.

Check Points

• What is the Curie law and when is it valid?
• What is the Curie–Weiss law?
• Why the dipolar–dipolar interaction cannot in general explain magnetic ordering?

3.2 Exchange Interaction

Let us consider first the case of two electrons subject to a Hamiltonian

H = p21
2me

+ p22
2me

+ V (r1, r2) . (3.2.1)

This Hamiltonian is independent of spin; however, the Pauli exclusion principle
imposes a spatial symmetry on the wavefunction ψ(r1, r2) solution of Hψ(r1, r2) =
Eψ(r1, r2). Since two electrons with the same quantum numbers are not allowed at
the same place, the total wavefunction ψ(r1, r2; s1, s2) must be antisymmetric with
respect to exchange of both spin and space:

ψ(r1, r2; s1, s2) = −ψ(r2, r1; s2, s1) .

If there is no spin–orbit coupling in our Hamiltonian, we can separate the wavefunc-
tion

ψ(r1, r2; s1, s2) = ψ(r1, r2)χ(s1, s2)
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and thereforewe see that the antisymmetry implies a correlation between the spin and
orbital parts of thewavefunction.This is a constraint of the problem, and solutions that
do not fulfill this constraint are infinite in energy. For two electrons, we have the total
S = 0, 1and correspondently Sz = 0,−1, 0, 1.Wecanwrite the corresponding states
in explicit symmetric and antisymmetric linear combinations, the antisymmetric
singlet state

|0; 0〉 1√
2

(| ↑↓〉 − | ↓↑〉) (3.2.2)

and the symmetric triplet state with S = 1, Sz = −1, 0, 1 :

|1; 1〉 = | ↑↑〉 (3.2.3)

|1; 0〉 = 1√
2

(| ↑↓〉 + | ↓↑〉)
|1;−1〉 = | ↓↓〉

where the states are labeled as |S; Sz〉. Since theHamiltonian does not depend on spin,
we can work simply with the spatial component of the wavefunction, but imposing
the right symmetry. The spatial part of the wavefunction corresponding to the sin-
glet configuration, ψsinglet (r1, r2) will therefore be symmetric in space coordinates,
whereas ψtr i plet (r1, r2) has to be antisymmetric

ψsinglet (r1, r2) = ψsinglet (r2, r1)

ψtr i plet (r2, r1) = −ψtr i plet (r2, r1) , (3.2.4)

and we can write the full state as

|�singlet 〉 = |ψsinglet 〉|0; 0〉
|�tr i plet (Sz)〉 = |ψtr i plet 〉|1; Sz .〉 (3.2.5)

The Schrödinger equation therefore reads

H |ψsinglet 〉 = Es |ψsinglet 〉
H |ψtr i plet (Sz)〉 = Et |ψtr i plet 〉

and if Es �= Et , the ground state is spin-dependent even though H is not. If that is
the case, since spatial and spin sectors are correlated, we search for a Hamiltonian
operating in spin space H̃ , coupling ŝ1 and ŝ2 and such that it is equivalent to H :

H̃ |0; 0〉 = Es |0; 0〉 (3.2.6)

H̃ |1; Sz〉 = Et |1; Sz〉 .
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The Hamiltonian that does the trick is [3]

H̃ = 1

4
(Es + 3Et ) − 1

�2
(Es − Et ) (ŝ1 · ŝ2) (3.2.7)

since
ŝ1 · ŝ2

�2
= 1

2
S(S + 1) − 3

4
=

{
− 3

4 S = 0
1
4 S = 1

. (3.2.8)

We have therefore constructed a Hamiltonian acting on spin space which is in prin-
ciple equivalent to the interacting Hamiltonian of Eq. 3.2.1, which gives an effective
interaction between the spins. This is called the molecular Heisenberg model and
can be written as

H̃ = J0 − J12ŝ1 · ŝ2
with

J12 = 1

�2
(Es − Et ) . (3.2.9)

If J12 > 0, this interaction favors a ferromagnetic alignment of the spins, consistent
with the fact that the singlet energy is higher than the triplet one. We now show an
example in which Es �= Et and calculate explicitly J12. We will see that part of J12
has no classical analog and comes from interchanging particles 1 and 2, since in
quantum mechanics they are indistinguishable.

1. Exercise: Prove Eq. 3.2.8 and show that H̃ given in Eq. 3.2.7 satisfies 3.2.6.

Check Points

• Why can you write a Hamiltonian in spin space which is equivalent to the Hamil-
tonian defined in position space?

• How do you impose the equivalence for the two-electron system?

3.3 Hydrogen Molecule

We consider now two hydrogen atoms that are brought close together to form a
hydrogen molecule. We consider the nuclei, a and b, as fixed at positions Ra and
Rb, whereas the electrons, at positions r1 and r2, are subject to the nuclei Coulomb
potential plus the repulsive Coulomb interaction between them . This corresponds to
taking the nuclei mass ma,mb → ∞ and it is an example of the denominated Born
Oppenheimer approximation. The Hamiltonian for each, separate hydrogen atom a
and b are given by
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Ha = −�∇2
1

2me
− e2

4πε0

1

|Ra − r1|
Hb = −�∇2

2

2me
− e2

4πε0

1

|Rb − r2|
and we know the respective eigenfunctions, φa,b with eigenenergies Ea,b. If the
distance between the two atoms |Ra − Rb| → ∞, these are the exact solutions. If,
however, the atoms are brought close together to form a molecule, there will be an
interaction term

HI = e2

4πε0

1

|Ra − Rb| − e2

4πε0

1

|Rb − r1| − e2

4πε0

1

|Ra − r2| + e2

4πε0

1

|r2 − r1|
and the total Hamiltonian is given by

Htot = Ha + Hb + HI .

Even though this is a quite simple system, this problem cannot be solved exactly and
we have to resort to approximations.We treat HI as a perturbation and use the atomic
wavefunctions φa,b as a basis for a variational solution of the full wavefunction. This
implies we are assuming the electrons are quite localized at their respective atom.
This approach is denominated the Heitler–London method.

If we consider the unperturbed Hamiltonian

H0 = Ha + Hb

the eigenfunctions will be simply linear combinations of the product of the original
orbitals, φaφb, with eigenenergy Ea + Eb since the two systems do not interact with
each other. To preserve the indistinguishability of the particles, we cannot simply
write a solution as φa(r1)φb(r2), since the probability density |φa(r1)|2|φb(r2)|2
is not invariant under exchanging r1 ←→ r2. The symmetric and antisymmetric
combinations fulfill, however, the indistinguishability condition

ψs(r1, r2) = 1√
2

(φa(r1)φb(r2) + φb(r1)φa(r2))

ψt (r1, r2) = 1√
2

(φa(r1)φb(r2) − φb(r1)φa(r2)) , (3.3.1)

where with the notation ψs , ψt we have anticipated that the symmetric (antisym-
metric) solution in space corresponds to the singlet (triplet) solution in spin space,
with a full wavefunction as given in Eq.3.2.5. Note that both ψs , ψt are eigen-
functions of H0 with eigenvalue Ea + Eb, and therefore without the interaction HI ,
Et = Es = Ea + Eb and the solutions are fourfold degenerate.
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We now calculate Et and Es perturbatively in the presence of the interaction HI

and using ψs , ψt as variational wavefunctions

Es/t = 〈ψs/t |Htot |ψs/t 〉
〈ψs/t |ψs/t 〉 . (3.3.2)

We are interested in the ground state solutions, so that φa,b are solutions of each
hydrogen atom with Ea,b = E0. The variational principle tells us that the energies
calculated by Eq.3.3.2 are always greater or equal that the true ground state.2

Let us first analyze the simple overlap

〈ψs/t |ψs/t 〉 =
∫

d3r1d
3r2ψ

∗
s/t (r1, r2)ψs/t (r1, r2) . (3.3.3)

If the two atoms are infinitely apart |Ra − Rb| → ∞, then the orbitals corresponding
to different atoms have zero overlap, 〈φa|φb〉 = 0, and

〈ψs/t |ψs/t 〉0 =
∫

d3r1d
3r2|φa(r1)|2|φb(r2)|2 = 1 . (3.3.4)

When the atoms are brought close together, their orbitals will overlap: 〈φa|φb〉 �= 0.
We do not calculate this overlap explicitly, but simply note that it will be finite and
denote it by O

O2 =
∫

d3r1d
3r2φ

∗
a(r1)φb(r1)φa(r2)φ∗

b(r2) (3.3.5)

and hence
〈ψs/t |ψs/t 〉 = 1 ± O2 . (3.3.6)

We now turn to the numerator in Eq.3.3.2. We already know that the noninteracting
contribution is 〈ψs/t |H0|ψs/t 〉

〈ψs/t |ψs/t 〉 = 2E0 . (3.3.7)

The correction to this noninteracting energy is given by the term containing 〈ψs/t

|HI |ψs/t 〉, which we see contains two kinds of terms. One of them is simply the
Coulomb electrostatic interaction between the two atoms, assuming that they are
close enough to interact but electron 1(2) still “belongs” to atom a(b)

K =
∫

d3r1d
3r2φ

∗
a(r1)φb(r2)HIφa(r1)φ∗

b(r2) . (3.3.8)

2Note that in general the variational procedure would be to write ψs/t (r1, r2) = c1φa(r1)φb(r2) ±
c2φb(r1)φa(r2) and find the coefficients c1,2 by minimizing Eq.3.3.2. One then finds c1 = c2 =
1/

√
2. In Eq.3.3.1 we used our knowledge of the symmetry of the problem plus the normalization

of the wavefunctions φa,b to write the result immediately.
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The remaining term has no classical analog, and it measures the Coulomb energy
cost upon exchanging the two electrons

X =
∫

d3r1d
3r2φ

∗
a(r1)φb(r1)HIφa(r2)φ∗

b(r2) . (3.3.9)

and it is called the exchange integral, or exchange interaction. Putting all together,
we obtain

Es/t = 2E0 + K ± X

1 ± O2
, (3.3.10)

where the + (−) corresponds to the singlet (triplet) solution ψs (ψt ). In general,
O � 1 and we can replace the denominator by 1. We have therefore shown that
Es − Et �= 0 and hence for this problem

J12 ≈ 2

�2
X , (3.3.11)

which justifies the name exchange parameter for J12.

Check Points

• What is the Heitler–London model?
• What is the exchange interaction and why does it not have a classical analog?

3.4 Heisenberg, Ising, and XY Models

In our variational solution for the hydrogen molecule from the last section, double
occupation is forbidden, so two electrons cannot be in the same atom at the same time.
This indicates our treatment is valid for insulators,where electrons are quite localized,
but in turn leads necessarily to small values of the exchange parameter, since J12
relies on the overlap of the single-atom orbitals. The above example therefore must
be taken as a toy model which reveals the character of the ferromagnetic interaction.
In general, the exchange constant is generated by more complex interactions, e.g.,
superexchange where the ferromagnetic exchange interaction between two spins is
mediated by an exchange interactionwith an atom in between thosewith a net angular
momentum.

We further postulate that our model can be generalized to N multielectron atoms

H = −1

2

∑

i j

Ji j Ŝi · Ŝ j , (3.4.1)

where the exchange coefficient Ji j is taken as a parameter of the model that has
to be calculated for each particular material. The Hamiltonian in Eq. 3.4.1 is the
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Heisenberg Hamiltonian. The factor of 1/2 accounts for the double-counting in the
sum.Wewrite Ŝ by convention, and we refer to themagnetic moment as “spins” in an
abuse of language: in reality, unless the orbital angular momentum is quenched, the
total angular momentum of the ions is meant. The spin operators follow the angular
momentum algebra when located at the same site, and commute with operators at
different sites:

[Ŝα
i , Ŝ j

β] = i�δi jεαβγ Ŝ
γ
i , (3.4.2)

where α, β, and γ indicate the spatial components of the angular momentum x , y,
and z. These commutation relations make the quantum Heisenberg model, despite
its simple appearance, quite a rich model, and exactly solvable only for a few simple
cases. The input of the model is the lattice connectivity and dimensionality, and the
exchange parameter Ji j .

Besides insulators, the Heisenberg Hamiltonian is a valid model for localized
magnetic moments embedded in a metal. In that case, the exchange interaction
is mediated by the conduction electrons, which gives rise to the RKKY interac-
tion (Ruderman–Kittel–Kasuya–Yosida). The calculated exchange function Ji j is an
oscillating function of position, alternating between positive and negative values,
and is longer ranged than in the insulating case.

If there are no local magnetic moments but the system still presents magnetic
order, the conduction electrons are also responsible for the magnetic order. In this
case, themagnetism is denominated itinerant and it is described by a different Hamil-
tonian: the Hubbard Hamiltonian. This model takes into account the kinetic energy
of the electrons, who can “jump” from lattice site to lattice site, and penalizes double
occupation with a local Coulomb repulsion term. The Hubbard model takes an effec-
tive Heisenberg form in the particular case of a half-filled band and strong Coulomb
interaction.

The Heisenberg Hamiltonian is the “father” Hamiltonian of other well-known
models in magnetism. In a crystal, crystal fields can give rise to anisotropies in the
exchange parameter Ji j . If the anisotropy is along only one direction, one can write

H = −
∑

i j

J̃i j
(
Ŝx
i Ŝ

x
j + Ŝ y

i Ŝ
y
j + � Ŝzi Ŝ

z
j

)
. (3.4.3)

If � > 1, magnetic ordering occurs along the z-axis, which is denominated the easy
axis. For � � 1, the Hamiltonian turns effectively into the Ising Model

HIsing = −
∑

i j

Ji j S
z
i S

z
j . (3.4.4)

Note that in this particular case, all operators in the Hamiltonian commute, and
therefore the model is in this sense classical. If � < 1, then we have an easy plane
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ordering. For� � 1, the system is effectively two-dimensional and isotropic, which
is termed the XY model

HXY = −
∑

i j

Ji j
(
Ŝx
i Ŝ

x
j + Ŝ y

i Ŝ
y
j

)
. (3.4.5)

If the system is placed in an external magnetic field, a Zeeman term is added to
the Hamiltonian

H = −1

2

∑

i j

Ji j Ŝi · Ŝ j − gμBB ·
∑

i

Ŝi

= −1

2

∑

i j

Ji j Ŝi · Ŝ j − gμBBŜ
z
i . (3.4.6)

In Eq. (3.4.6), the spin operators are dimensionless and � has been absorbed in μB

(correspondingly, in the commutation relation Eq. (3.4.2) � should be set to 1 if
this convention is used). Note that the Zeeman energy is −m · B (see Eq. (1.2.7))
and tends to align the magnetic moment with the magnetic field, and anti-align the
angular momentum. Sometimes, by convention the extra minus sign is not used,
since from now onwards one always works with the angular momentum operators,
and one takes gμB > 0. This corresponds simply to transform B → −B if we want
to translate into the magnetization or magnetic moments, and does not affect the
results.

Check Points

• Write the Heisenberg Hamiltonian in a magnetic field.

3.5 Mean Field Theory

Once we have a Hamiltonian that models our system, we want in principle to (i)
find the ground state, that is, the lowest energy eigenstate of the system, which is
the only state populated at zero temperature, (ii) find the excitations on top of this
ground state,whichwill determine the behavior of the systemat T �= 0, and (iii) study
phase transitions, either at T = 0 (denominated a quantumphase transition) whereby
changing some other external parameter like the magnetic field, the ground state of
the system changes abruptly, or at finite temperature, where an order parameter of the
system (given by a quantum-statistical average of some relevant quantity to describe
the system) goes to zero as a function of temperature or other external parameters.
An example of the latter is the magnetization M(B, T ). We go back now to the issue
of magnetic ordering armed with the Heisenberg Hamiltonian. As we pointed out
above, this is a very rich model, and there are very few general statements that can be
made about the three points mentioned above.We turn therefore first to a well-known
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approximation denominatedmean field theory. This approximation is in general good
only for long-range interactions and high dimensions; it is, however, widely used to
get a first idea of, for example, what kind of phases and phase transitions our model
can present. For the Heisenberg model, we will see that mean field theory will give
as a microscopic justification of the Weiss molecular fields we introduced at the
beginning of this chapter.

We start by assuming that 〈Ŝi 〉 is finite. For example, for a ferromagnetic ground
state, 〈Ŝi 〉 is uniform and such that

M = N

V
gμB〈Ŝi 〉 , (3.5.1)

where N is the number of lattice sites and V is the total volume. We write now Ŝi in
the suggestive form

Ŝi = 〈Ŝi 〉 +
(
Ŝi − 〈Ŝi 〉

)
, (3.5.2)

which corresponds to splitting the operator into its quantum-statistical average value
and the fluctuations with respect to this average. In mean field theory, these fluctu-
ations are assumed to be small. The mean field Hamiltonian is obtained from the
Heisenberg Hamiltonian by keeping only terms up to first order in the fluctuation,

HMF = 1

2

∑

i j

Ji j 〈Ŝi 〉 · 〈Ŝ j 〉 −
∑

i j

Ji j 〈Ŝi 〉 · Ŝ j − gμBB ·
∑

i

Ŝi , (3.5.3)

where we already included an external magnetic field B. The first term in Eq. (3.5.3)
is simply a constant shift in the energy. The second term corresponds to a spin a site
i in the presence of a magnetic field generated by all other spins. We can therefore
define an effective magnetic field

Beff = B + 1

gμB

∑

i

Ji j 〈Ŝi 〉 (3.5.4)

and our problem is reduced from an interacting problem (where spins interact with
eachother via the exchange interaction), to that of noninteracting spins in the presence
of a magnetic field. If we go back to Eq. (3.1.7), we see that now we can give a
microscopic explanation to the Weiss molecular fields, which were assumed to be
proportional to to the magnetization. In particular, we find that we can write

Beff = B + λ

μ0
M (3.5.5)

with

λ = 1

μ0

V

N

1

(gμB)2
J0, (3.5.6)
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where we have used translational symmetry and defined J0 = ∑
i Ji j independent

of j . This system therefore presents a transition to an ordered state as a function of
temperature and magnetic field as discussed for the Curie–Weiss law, but we now
have a microscopic explanation for the phenomenological model.

Check Points

• What is the meaning of the mean field theory?
• How is it related to the Curie–Weiss law?

3.6 Ground State of the Ferromagnetic Heisenberg
Hamiltonian

For the particular case in which Ji j ≥ 0 ∀ i, j it is possible to find the ground state
of the Heisenberg Hamiltonian without further specifications. This is called the fer-
romagnetic Heisenberg model since the ground state is ferromagnetically ordered,
as we show in the following.

We consider, hence, the Hamiltonian

Ĥ = −1

2

∑

i j

Ji j Ŝi · Ŝ j , with Ji j = Jji ≥ 0 . (3.6.1)

If the spins were classical vectors, the state of lowest energy would be that one with
all N spins are aligned. Hence, a natural candidate for the ground state of Ĥ is

|0〉 = |S, S〉1|S, S〉2...|S, S〉N , (3.6.2)

where Ŝ2i |S, S〉i = S(S + 1)|S, S〉i and Ŝzi |S, S〉i = S|S, S〉i , that is, all spins take
their maximum projection of Ŝz (we consider all spins identical). The individual spin
operators, however, do not commute with the Hamiltonian 3.6.1,

[
Ŝi , Ĥ

]
�= 0

and therefore a product states of the form

|ψ〉 = |S,m1〉|S,m2〉...|S,mN 〉 (3.6.3)

(with Ŝzi |S,mi 〉 = mi |S,mi 〉) span a basis of theHilbert space, but are not necessarily
eigenstates of Ĥ . The total spin operator ŜTOT, however, does commute with Ĥ

[
ŜTOT, Ĥ

]
= 0
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and we can construct an eigenbasis for Ĥ , Ŝ2TOT, and Ŝz
TOT. The state 3.6.2 is a state

with maximum ŜTOT. We will now prove that (i) 3.6.2 is an eigenstate of 3.6.1, and
(ii) that there is no eigenstate with higher energy [8].

To follow with the proof, it is convenient to recast Ĥ in term of ladder operators

Ŝ±
i = Ŝx

i ± i Ŝ y
i (3.6.4)

Ŝ±
i |Si ,mi 〉 = √

(Si ∓ mi ) (Si + 1 ± mi )|Si ,mi ± 1〉 ,

from which it is clear why they are call ladder operators: Ŝ+ (Ŝ−) increases
(decreases) the projection of Ŝz by one unit. In terms of 3.6.4, the Hamiltonian
3.6.1 reads

Ĥ = −1

2

∑

i j

Ji j

[
1

2

(
Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j

)
+ Ŝzi Ŝ

z
j

]
. (3.6.5)

With this expression, it is now straightforward to show that |0〉 is an eigenstate of Ĥ

Ĥ |0〉 = −1

2

∑

i j

Ji j Ŝ
z
i Ŝ

z
j |0〉 = − S

2

2 ∑

i j

Ji j |0〉

since Ŝ+
i |0〉 = 0 ∀ i (remember that spin operators at different sites commute, and

Jii = 0). Therefore,
Ĥ |0〉 = E0|0〉

with

E0 = − S

2

2 ∑

i j

Ji j .

We now need to prove that E0 is the minimum possible energy. For that, we consider
the expectation value of Ĥ with an arbitrary product state as in Eq.3.6.3

E ′
0 = 〈ψ|Ĥ |ψ〉 = −1

2

∑

i j

Ji j 〈ψ|Ŝzi Ŝzj |ψ〉 = −1

2

∑

i j

Ji jmim j

where we have used that

Ŝ+
i Ŝ

−
j |ψ〉 ∝ |S,m1〉...|S,mi + 1〉...|S,m j − 1〉...|S,mN 〉

and therefore
〈ψ|Ŝ+

i Ŝ
−
j |ψ〉 = 0 .
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We further note that if Ji j ≥ 0 then

∑

i j

Ji jmim j ≤
∑

i j

Ji j SS

and hence
E ′
0 ≥ E0 ,

which proves that the fully polarized state |0〉 given in Eq.3.6.2 is indeed the ground
state. This ground state is, however, not unique, but it is (2STOT + 1) degenerate
in spin space, with STOT = NS. This can be easily visualized in the two-spin case,
where for the triplet state, STOT = 1 and the state has three possible projections of
Ŝz , see Eq.3.2.3. Note that each of these states is, moreover, infinitely degenerate in
position space, since we are able to choose the quantization axis freely. This is an
example of what is called spontaneous symmetry breaking, which occurs when the
ground state has a lower symmetry than the Hamiltonian [9]. The ground state of
Ĥ is a specific realization of the (2STOT + 1) possible ground states, and therefore
has “picked” a preferred direction in spin space, which is not determined by the
symmetry of Ĥ . We mention in passing that our results are valid in all its generality
strictly for T = 0. For T > 0, theMermin–Wagner theorem tells us that, in one and
two dimensions and for short-range interactions, continuous symmetries cannot be
spontaneously broken.

If we add a magnetic field to Ĥ , our total Hamiltonian is the one in Eq.3.4.6. In
this case, it is favorable for the system also to maximize the projection of Ŝz , and in
this case |0〉 given in Eq.3.6.2 is the only ground state, with energy

E0(B) = − S

2

2 ∑

i j

Ji j − gμBBNS . (3.6.6)

In this case, the symmetry is not spontaneously broken, since it is already broken at
the Hamiltonian level by the applied magnetic field.

Check Points

• What is the ground state of the ferromagnetic Heisenberg Hamiltonian?
• How do you prove it is the ground state?
• What happens in the presence of an external magnetic field to the degeneracy of
the state?
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3.7 Ground State of the Antiferromagnetic Heisenberg
Hamiltonian

Aside from the ferromagnetic case treated in the previous section, finding the ground
state of the Heisenberg Hamiltonian is in general difficult and has to be studied case
by case. The ground state will depend on the nature of the interactions (short or long
range, sign, anisotropy), from the lattice structure, and from the dimensionality of
the system. To illustrate this difficulty, we discuss here briefly the antiferromagnetic
Heisenberg model on a bipartite lattice [9]. In this case Ji j ≤ 0 ∀ i, j and the lattice
can be subdivided into two sublattices A and B, such that Ji j is finite only when i
and j belong to two different sublattices. The simplest example is that of a square
lattice with nearest-neighbor interactions, where all nearest neighbors of A belong
to the B sublattice, and vice versa, see Fig. 3.2.

A guess of the ground state based on on the classical model is the so-called Néel
state: the two sublattices are fully polarized, but in opposite directions

|0?〉AF =
∏

i∈A

|S, S〉i
∏

j∈B
|S,−S〉 j .

It is easy to see, however, that this state is not an eigenstate of the Heisenberg
Hamiltonian.Using the representationof Ĥ in termsof ladder operators, seeEq.3.6.5,
we see that

B

B

B

B

A

Fig. 3.2 Antiferromagnetic Heisenberg model on a bipartite square lattice, the dotted lines indicate
nearest-neighbor interactions. Example of a Néel state
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Ĥ |0?〉AF = −1

2

∑

i∈A

∑

i∈B
Ji j

[
1

2

(
Ŝ+
i Ŝ

−
j |0?〉AF + Ŝ−

i Ŝ
+
j |0?〉AF

)
+ Ŝzi Ŝ

z
j |0?〉AF

]
.

The first term is simply zero, since the sublattices A and B are fully polarized in
“the right way” with respect to the operators. The last term is simply proportional to
|0?〉AF. However, for the second term

Ŝ−
i Ŝ

+
j |0?〉AF ∝ |S, 〉...|S,−S + 1〉 j ...|S, S − 1〉i ...|S,mN 〉

which shows that |0?〉AF cannot be an eigenstate. In general, one can prove that the
true ground state |0〉AF is nondegenerate and a singlet of total spin: ŜTOT|0〉AF = 0.
This is called the Marshall’s Theorem. Which kind of singlet is the actual ground
state is, however, not determined.

Check Points

• What is a Néel state?
• Why it is not the ground state of the antiferromagnetic Heisenberg Hamiltonian?

3.8 Ground State of the Classical Heisenberg Model

The classical Heisenberg model is obtained by replacing the spin operators Ŝi by
simple vectors Si with fixed length |Si | = S. As we saw in previous sections, this
kind of approximation is valid in the limit of large spin S. For the classical model, it
is straightforward to find the ground state for translational invariant systems,

Ji j = Jji = J (Ri − R j ), (3.8.1)

where Ri indicates the points on a Bravais lattice. In Fourier space

Si = 1√
N

∑

k

Skeik·Ri (3.8.2)

Sk = 1√
N

∑

i

Si e−ik·Ri

and hence

Hcl = − 1

2N

∑

RiR j

J (Ri − R j )
∑

kk′

(
eik·RiSk · Sk′eik

′ ·R j

)
.
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Defining �R = Ri − R j and using

∑

Ri

eik·Ri = Nδk,0 (3.8.3)

being δk,k′ the Kronecker Delta, we obtain

Hcl = − 1

2N

∑

Ri�R

J (�R)
∑

kk′

(
eik·RiSk · Sk′eik

′ ·Ri e−ik′ ·�R
)

= − 1

2N

∑

�R

J (�R)
∑

kk′
Nδk+k′,0Sk · Sk′e−ik′ ·�R

= −1

2

∑

�R

J (�R)
∑

k

Sk · S−ke
ik·�R

and defining

J (k) =
∑

i

J (�R)eik·�R (3.8.4)

we obtain

Hcl = −1

2

∑

k

J (k)Sk · S−k. (3.8.5)

Imposing the constraint S2 = S2, one can show that theminimum of the energy given
by Eq.3.8.5 is given by setting k = Q, where Q determines the global maximum of
J (Q) [10]. One obtains the equilibrium configuration

Si = S (cos(Q.Ri ), sin(Q.Ri ), 0)

which is in general a planar helical state. Since Q is determined by the maximum
of J (Q), the order is not necessarily commensurate with the lattice, unless this
maximum coincides with a high symmetry point in the Brillouin zone. Special cases
areQ = 0, where we recover ferromagnetic order, orQ taking a value at the edge of
the Brillouin zone, in which case the order is antiferromagnetic. Applying amagnetic
field in the z direction tilts the magnetic order out of plane.

Check Points

• What is the classical Heisenbergmodel and how does one in general find its ground
state?
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3.9 Dipole–Dipole Interactions

In the Heisenberg Hamiltonian, we have not included the dipole–dipole interaction
term

Ĥd−d = − μ0

4π

(μBg)2

2

∑

i �= j

1

|ri − r j |3
[
3Ŝi · (

ri − r j
)
Ŝ j · (

ri − r j
)

|ri − r j |2 − Ŝi · Ŝ j

]
.

(3.9.1)

We argued this term is too small to justify magnetic ordering at the observed tem-
peratures, and we found out that the exchange interaction is orders of magnitude
larger. However, the exchange interaction depends on the overlap of orbitals, and
as such is generally short ranged: it decays exponentially with distance, at least for
insulators. From Eq.3.9.1, we see that the dipole–dipole interaction decays instead
algebraically, as 1/r3, and that means that it will be dominant at large distances. This
gives rise, in large samples, to the formation of domains. In intermediate-size sam-
ples, usually micrometer sized, the competition between dipole–dipole interactions
and exchange interactions leads to textured ground states. Being long ranged, the
dipolar interactions are sensitive to the boundaries of the sample, where the spins
try to align with the boundary, so as to minimize the “magnetic monopoles” at the
surface as introduced in Chap.1. Dipole–dipole interaction terms can be included in
the Heisenberg Hamiltonian in the long-wavelength limit as demagnetization fields.



Chapter 4
Spin Waves and Magnons

In the last chapter, we dealt with the ground state of the Heisenberg model for a
few solvable examples. The ground state is the only eigenstate that is occupied at
strictly zero temperature. The excitations on top of this ground state will determine
the behavior of the system at low temperatures. These are collective excitations of
the magnetic system, and their quanta are denominated magnons [11]. One can draw
an analogy to another physical phenomenon which is perhaps more intuitive: that
of mechanical vibrations. There, all atoms participate in the collective mechanical
vibration, and we call phonons the respective quanta. In the next sections, we will
study the magnetic elementary excitations in more detail. We will focus on the
simplest case of the Heisenberg ferromagnet, but the concepts are general.

4.1 Excitations of the Heisenberg Ferromagnet

For the Heisenberg ferromagnet at T = 0, we found that all spins are aligned with
and the magnetization is given by the saturation magnetization

Ms = gμB
N

V
S .

At T �= 0, some spins will “flip” or, more generally, decrease by one unit, which in
turn will decrease the magnetization from its saturation value. An obvious candidate
for an excited state is therefore

|i〉 = |S, S〉1. . .|S, S − 1〉i . . .|S, S〉N (4.1.1)

which can be obtained from the ground state Eq. 3.6.2 as

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019
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SpringerBriefs in Physics, https://doi.org/10.1007/978-3-030-13345-0_4
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|i〉 = 1√
2S

Ŝ−
i |0〉 . (4.1.2)

One can easily see that |i〉 is an eigenstate of the Ŝz operator

Ŝzi |i〉 = (S − 1)|i〉
Ŝzj | j〉 = S| j〉 ∀ j �= i .

However, Ŝ+
i |i〉 �= 0, instead one obtains

Ŝ−
j Ŝ

+
i |i〉 = 2S| j〉 .

Therefore, the Heisenberg Hamiltonian 3.6.5 shifts the site of the “flipped” spin
i → j , and |i〉 as given in Eq.4.1.1 is not an eigenstate of 3.6.5. It is also not a good
approximation to an excited eigenstate, since flipping a spin in such a manner has
a very high energy cost, of the order of the exchange interaction. For example, for
nearest-neighbor interaction with exchange constant J , flipping a spin has an energy
cost of �E ∼ z J S, where z is the coordination number (that is, z is the number of
nearest neighbors, e.g., for a square lattice z = 4). We have already seen that the
exchange constant is of the order of the critical temperature, quite a high energy for
regular ferromagnets.

One can prove that an actual eigenstate of 3.6.5 is given by

|k〉 = 1√
N

∑

Ri

e−iRi ·k|i〉 , (4.1.3)

where Ri are the lattice sites. We see therefore that an eigenstate is formed by dis-
tributing the “flipped” spin over all sites, and therefore it is a collective excitation of
the system. This collective excitation has well-defined momentum �k (up to a recip-
rocal lattice vector) and energy �ω(k) and we call it a quasiparticle. In particular,
for magnetic systems these quasiparticles are denominated magnons. In the follow-
ing, we will show that |k〉 is an eigenstate of 3.6.5 and will calculate its dispersion
relation �ω(k).

In order to do this, we first perform a Fourier transform of the Hamiltonian 3.6.5
by defining the spin operators in momentum space (in analogy to the classical case,
see Eq. 3.8.4)

Ŝα
k = 1√

N

∑

Ri

e−ik·Ri Ŝα
i (4.1.4)

Ŝα
i = 1√

N

∑

k

Ŝα
k e

ik·Ri ,
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where α = x, y, z, ±. Note that

(
Ŝ+
k

)† = Ŝ−
−k

(
Ŝzk

)† = Ŝz−k

and one can verify that the commutators now read

[
Ŝ+
k1 , Ŝ

−
k2

]
= 2Ŝzk1+k2 (4.1.5)

[
Ŝzk1 , Ŝ

±
k2

]
= ±Ŝ±

k1+k2 .

Using that Ji j = Jji and that spin operators at different sites commute, we rewrite
slightly the Heisenberg Hamiltonian 3.6.5 as

Ĥ = −1

2

∑

i j

Ji j
[
Ŝ+
i Ŝ

−
j + Ŝzi Ŝ

z
j

]
. (4.1.6)

From Eqs. 4.1.4 and using again Eq. 3.8.1, we obtain

Ĥ = − 1

2N

∑

RiR j

J (Ri − R j )
∑

kk′

(
Ŝ+
k e

ik·Ri Ŝ−
k′eik

′ ·R j + Ŝzke
ik·Ri Ŝzk′eik

′ ·R j

)

− gμB√
N
B0

∑

Ri

∑

k

Ŝzke
ik·Ri ,

where we added an external magnetic field. We use �R = Ri − R j and Eq. 3.8.3 to
write

Ĥ = − 1

2N

∑

�R

J (�R)
∑

Ri

∑

kk′
ei(k+k′)·Ri

(
Ŝ+
k Ŝ

−
k′ + Ŝzk Ŝ

z
k′

)
e−ik′ ·�R

− gμB

√
N B0

∑

k

Ŝzkδk,0

= − 1

2N

∑

�R

J (�R)N
∑

kk′
δk+k′,0

(
Ŝ+
k Ŝ

−
k′ + Ŝzk Ŝ

z
k′

)
e−ik′ ·�R − gμB

√
N B0 Ŝ

z
0

= − 1

2

∑

�R

J (�R)
∑

k

(
Ŝ+
k Ŝ

−
−k + Ŝzk Ŝ

z
−k

)
eik·�R − gμB

√
N B0 Ŝ

z
0 .

Using the definition for J (k) given in Eq. 3.8.4, we finally obtain an expression for
the Heisenberg Hamiltonian in momentum space
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Ĥ = −1

2

∑

k

J (k)
(
Ŝ+
k Ŝ

−
−k + Ŝzk Ŝ

z
−k

)
− gμB

√
N B0 Ŝ

z
0 . (4.1.7)

First, we check the action of Ĥ given in Eq.4.1.7 on the ground state |0〉. For that
we note

Ŝzk|0〉 = 1√
N

∑

Ri

e−ik·Ri Ŝzi |0〉 = S√
N

∑

Ri

e−ik·Ri |0〉 = S
√
Nδk,0|0〉

Ŝ+
i |0〉 = 0 ⇒ Ŝ+

k |0〉 = 0

and examine the action of each term in Eq.4.1.7 on |0〉. Using the commutators in
Eq.4.1.5, for the first term in the sum, we obtain

−1

2

∑

k

J (k)Ŝ+
k Ŝ

−
−k|0〉 = −1

2

∑

k

J (k)
(
Ŝ−

−k Ŝ
+
k + 2Ŝz0

)
|0〉

= −1

2

∑

k

J (k)
(
2Ŝz0

)
|0〉 = −S

√
N

∑

k

J (k)|0〉 = 0,

where the last equality stems from

∑

k

J (k) =
∑

k

∑

�R

J (�R)eik·�R =
∑

�R

J (�R)Nδ�R,0 = N J (�R = 0) = 0 .

For the second term in Eq.4.1.7

−1

2

∑

k

J (k)Ŝzk Ŝ
z
−k|0〉 = −1

2

√
NS

∑

k

J (k)Ŝzkδ−k,0|0〉

= −1

2

√
NSJ (k = 0)Ŝz0|0〉

= −1

2
NS2 J (k = 0)|0〉 .

We now note that

N J (k = 0) = N
∑

�R

J (�R) =
∑

Ri�R

J (�R) =
∑

RiR j

J (Ri − R j ) =
∑

i j

Ji j

and therefore

−1

2

∑

k

J (k)Ŝzk Ŝ
z
−k|0〉 = − S2

2

∑

i j

J i j |0〉 .
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For the third term in Eq.4.1.7, we obtain simply

−gμB

√
N B0 Ŝ

z
0|0〉 = −gμBN B0S|0〉 .

Putting all together, we obtain Ĥ |0〉 = E0|0〉 with

E0 (B0) = − S

2

2 ∑

i j

Ji j − gμBB0NS

which coincides with our result in Eq. 3.6.6 as expected.
We now want to show that |k〉 given in Eq.4.1.3 is a eigenstate of 4.1.7. Using

4.1.2, we can write |k〉 in terms of the ladder operators in momentum space,

|k〉 = 1√
2S

Ŝ−
k |0〉 , (4.1.8)

hence it is enough to show that Ŝ−
k |0〉 is an eigenstate [3]. Writing

Ĥ Ŝ−
k |0〉 =

(
Ŝ−
k Ĥ +

[
Ĥ , Ŝ−

k

])
|0〉 =

(
Ŝ−
k E0 +

[
Ĥ , Ŝ−

k

])
|0〉

= E0 Ŝ
−
k |0〉 +

[
Ĥ , Ŝ−

k

]
|0〉 ,

we see that this amounts to showing that
[
Ĥ , Ŝ−

k

]
|0〉 ∝ Ŝ−

k |0〉. Using similar manip-

ulations as above, and taking into account that J (k) = J (−k), one obtains

[
Ĥ , Ŝ−

k

]
|0〉 = [gμBB0 − S (J (k) − J (k = 0))] Ŝ−

k |0〉 (4.1.9)

and therefore |k〉 is an eigenstate of 4.1.7 with eigenvalue

E(k) = E0(B0) + gμBB0 − S (J (k) − J (k = 0)) . (4.1.10)

The energy on top of the ground state is the excitation energy

�ω(k) = gμBB0 − S [J (k) − J (k = 0)] , (4.1.11)

which is simply the energyof onemagnon—thequasiparticle energy is always defined
with respect to the ground state energy; in field theory, it is common to call the ground
state of a system the “vacuum”. Equation4.1.11 is also called the dispersion relation,
since it gives the dependence of the energywith thewave vector. Note that for B0 = 0,
�ω(0) = 0 and therefore any infinitesimal temperature will cause excitations with
k = 0. This “zeromode” is an example of aGoldstone mode, which is always present
when there is spontaneous symmetry breaking in the system. In general, Goldstone
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modes are massless bosons quasiparticles which appear in systems where there is a
spontaneously broken continuous symmetry.

If we compare with the ground state energy E0(B0), in particular, the Zeeman
term, we see that the magnetic moment of the system has been modified by one unit.
We can therefore conclude that a magnon has spin 1, and therefore it is a bosonic
quasiparticle. The expectation value of a local spin operator Ŝzi with respect to the
one-magnon state |k〉 can be shown to be

〈k|Ŝzi |k〉 = S − 1

N
= 〈0|Ŝzi |0〉 − 1

N
∀ i, k (4.1.12)

which shows that the spin reduction is indeedof oneunit and it is distributeduniformly
over all sites Ri . Semiclassically, one can picture each spin in the lattice precessing
around the z-axis with a projection of �(S − 1/N ). However, except for k = 0, the
spins do not precess in phase but instead they have a phase difference of e−ik·(Ri−R j ),
forming a spin wave. This semiclassical picture can be better understood if we look
at the equations of motion for the spins, which we do in the following section.

Wefinish this section by stating that our intuition fails again ifwewant to construct
two-magnon states. The obvious choice

|k,k′〉 ∝ Ŝ−
k Ŝ

−
k′ |0〉 (4.1.13)

is actually not an eigenstate of the Heisenberg Hamiltonian. This is due to magnon–
magnon interactions present in the Hamiltonian, which are not taken into account in a
simple product state as 4.1.13. The same of course holds for multiple-magnon states.
Therefore, when having multiple magnons excited in a system, they can interact and
magnon states will decay due to magnon–magnon interactions. These excited states
therefore have a certain lifetime. Besides magnon–magnon interactions, scattering
with impurities or phonons in amaterial will determine the lifetime of magnon states.

Check Points

• What is a magnon?
• How do you obtain the energy dispersion of a magnon?

4.2 Equation of Motion Approach

In the Heisenberg picture, the time dependence is included in the operators. Instead
of the Schrödinger equation for the state vectors, we write the Heisenberg equation
of motion for the spin operators

�
dŜi
dt

= i[Ĥ , Ŝi ] . (4.2.1)
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Using the Heisenberg Hamiltonian Eq. 3.4.6 and the commutation relations for the
spin operators, it is straightforward to show

�
dŜi
dt

= −
⎛

⎝
∑

j

Ji j Ŝ j + gμBB0

⎞

⎠ × Ŝi . (4.2.2)

This equation is exact. We can compare it, however, with the classical equation of
motion for the angular momentum given in Eq. 1.5.2, and we see that, by recovering
the units of the spin and absorbing the Planck constant into the definition of the
exchange constant, Eq. 4.2.2 can be directly translated into a classical equation of
motion by taking the expectation values of the spin operators, and in particular

Be f f = B0 + 1

gμB
〈
∑

j

Ji j Ŝ j 〉

is the effective magnetic field including the Weiss molecular fields.
We turn now to a different approximation, in which we retain for now the operator

character of Ŝi . We are, as in the previous section, interested in the low-energy
excitations of the system on top of the ground state. Since the ground state is fully
polarized, we expect the projection Ŝzi to remain almost constant and close to S. From
Eq.4.1.12, we see this is valid as long as NS � 1, that is, the total spin number is
much larger than the number of excitations in the system. From Eq.4.2.2, we obtain

�
d Ŝx

i

dt
≈ −S

∑

j

Ji j
(
Ŝ y
j − Ŝ y

i

)
+ gμBB0 Ŝ

y
i (4.2.3)

�
d Ŝy

i

dt
≈ −S

∑

j

Ji j
(
Ŝx
i − Ŝx

j

)
− gμBB0 Ŝ

x
i

�
d Ŝzi
dt

≈ 0 .

These equations are decoupled for the ladder operators

�
d Ŝ±

i

dt
= ∓i

⎡

⎣S
∑

j

Ji j
(
Ŝ±
i − Ŝ±

j

)
+ gμBB0 Ŝ

±
i

⎤

⎦ , (4.2.4)

where we write the equal sign in the understanding that the equation is valid in the
limit established for Eqs. 4.2.3.

Equation4.2.4 still couple spin operators at different sites. To decouple them, we
go oncemore to the Fourier representation.UsingEq.4.1.4, for the lowering operator,
one obtains
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�
d Ŝ−

k

dt
= i S [J (k = 0) − J (k)] Ŝ−

k + igμBB0 Ŝ
−
k . (4.2.5)

Hence, we see that the equation of motion for each wave vector k is decoupled from
the rest, in the spirit of a normal mode’s decomposition. Equation4.2.5 is easily
solved by

Ŝ−
k = M̂ke

iω(k)t+iαk (4.2.6)

with the time dependence given entirely by the exponential term, and ω(k) is given
by Eq.4.1.11 (αk is an arbitrary phase). We have therefore re-derived the dispersion
relation obtained in the previous section for the one-magnon state.

In the semiclassical picture and considering only one excited mode, for the real-
space components of the spin, we obtain

Sx
i = Mk√

N
cos (k · Ri + ω(k)t)

Sy
i = Mk√

N
sin (k · Ri + ω(k)t)

Szi = S

which are the components of a plane wave with frequency ω(k).
Coming back to the Heisenberg equation of motion for Ŝ−

k

�
d Ŝ−

k

dt
= i[Ĥ , Ŝ−

k ]

from Eq.4.2.6, we can write

�ω(k)Ŝ−
k |0〉 = [Ĥ , Ŝ−

k ]|0〉 = Ĥ Ŝ−
k |0〉 − Ŝ−

k E0|0〉

and therefore we recover

Ĥ Ŝ−
k |0〉 = [E0 − �ω(k)] Ŝ−

k |0〉

as in the exact result.
As an example, we give the dispersion relation for spins on a cubic lattice with

nearest-neighbor interactions. For this case,

J (k) = 2J
(
cos(kxa) + cos(kya) + cos(kza)

)

and therefore

�ω(k) = 2J S
(
3 − cos(kxa) + cos(kya) + cos(kza)

) + gμBB0 .
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For small k, we obtain a quadratic dispersion

�ω(k) ≈ J Sk2a2 + gμBB0 , (4.2.7)

which is gapped as long as B0 �= 0. Note that this dispersion is different from the
usual acoustic phonon dispersion in solids, which is linear in k. The dispersion 4.2.7
is actually similar to that encountered for flexural phonon modes in materials with
reduced dimensionality: for example, the out-of-plane phonon modes of a graphene
membrane. The k2 dispersion is a signature of the rotational symmetry of the problem.

Check Points

• Derive theHeisenberg equation ofmotion for the spins from theHeisenbergHamil-
tonian.

• Relate the concept of magnon from the previous section, with the semiclassical
picture given by the equations of motion.

4.3 Holstein–Primakoff Transformation

Due to their algebra (that is, their commutation relations), angular momentum opera-
tors are difficult to treat in an interacting theory. There are, however, transformations
which write the angular momentum operators in terms of second-quantization cre-
ation and annihilation operators, either fermionic or bosonic. The idea of these trans-
formations is to simplify the commutation rules, so that one can use well-known
methods of second quantization. The price to pay is that the transformations are
nonlinear. In this section, we go over one of these transformations which is widely
used, the Holstein–Primakoff transformation. Within this transformation, the angu-
lar momentum operators are written as nonlinear functions of bosonic creation and
annihilation operators, that is, a collection of harmonic oscillators.

Before writing the transformation explicitly, we remind briefly the properties of
creation (â†i ) and annihilation (âi ) harmonic oscillator operators. The subscript i
indicates the lattice site, that is, we have a harmonic oscillator at every site on the
lattice. The commutation relations for these bosonic operators are

[
âi , â

†
j

]
= δi j (4.3.1)

[
âi , â j

] =
[
â†i , â

†
j

]
= 0

The Hamiltonian of a single oscillator reads

Hosc = �ωi

(
â†i âi + 1

2

)
, (4.3.2)
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where ωi is the frequency of oscillator i . If the oscillators are independent, the total
Hamiltonian is simply the sum over the respective Hamiltonians. Usually, however,
the original operators are not independent, but if the Hamiltonian is quadratic in
these, one can find a linear transformation which diagonalizes the Hamiltonian, so
that in the new basis the Hamiltonian is a sum of harmonic oscillators Eq.4.3.2. A
state |ni 〉 with ni “particles” at site i can be constructed from the vacuum |0i 〉 by
applying â†i (below we will identify ni with the number of flipped spins at site i). In
general, we have

âi |0i 〉 = 0 (4.3.3)

â†i |ni 〉 = √
ni + 1|ni + 1〉

âi |ni 〉 = √
ni |ni − 1〉

â†i âi |ni 〉 = ni |ni 〉 = n̂i |ni 〉 ,

where n̂i = â†i âi is the number operator at site i. Therefore, |ni 〉 is an eigenstate of
Hosc with energy E(ni ) = �ωi (ni + 1/2), with ni = 0, 1, 2, ....

Comparing Eqs. 4.3.3 with Eq. 3.6.4 and Ŝzi

Ŝ±
i |S,mi 〉 = √

(S ∓ mi ) (S + 1 ± mi )|S,mi ± 1〉
Ŝzi |S,mi 〉 = mi |S,mi 〉,

we see that the creation and annihilation bosonic operators act in a similar way to
the spin ladder operators, whereas the number operator is diagonal in this basis just
as Ŝzi . However, we cannot replace simply Ŝ±

i by â†i , âi since this would not satisfy
the commutation relations for the spin. This is accounted for by using a nonlinear
transformation, the Holstein–Primakoff transformation

Ŝ+
i = √

2S

√

1 − â†i âi
2S

âi

Ŝ−
i = √

2Sâ†i

√

1 − â†i âi
2S

Ŝzi =
(
S − â†i âi

)
. (4.3.4)

As we anticipated, in this case, the number operator counts the number of flipped
spins, which we can see from the last equality in Eqs.4.3.4

Ŝzi |ni 〉 = (
S − n̂i

) |ni 〉 = (S − ni ) |ni 〉 ≡ mi |ni 〉 .

For ni = 0, the spin is fully polarized andmi = S, and hence the Holstein–Primakoff
vacuum |ni = 0〉 corresponds to the fully polarized spin state. We see, however, that
the spectrum of n̂i is constrained, due to the square root in Eqs. 4.3.4 wemust impose
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ni = 0, 1, ...2S. The maximum value of ni corresponds to the spin “fully flipped”,
mi = −S. We observe that

Ŝ−
i |mi = −S〉 = √

2Sâ†i

√
1 − n̂i

2S
|ni = 2S〉 = √

2Sâ†i

√
1 − 2S

2S
|ni = 2S〉 = 0

Ŝ+
i |mi = −S − 1〉 = √

2S

√
1 − n̂i

2S
âi |ni = 2S + 1〉

= √
2S

√
2S + 1

√
1 − n̂i

2S
|ni = 2S〉 = 0

and hence the ladder operators do not connect the physical subspace ni = 0, 1, ...2S
with the unphysical one ni > 2S.

Let us now define

φ(n̂i ) = √
2S

√
1 − n̂i

2S
(4.3.5)

and write the Heisenberg Hamiltonian Eq. 3.4.1 in terms of the Holstein–Primakoff
operators, Eqs. 4.3.4. We find

Ĥ = −NS2 J0
2

+ SJ0
∑

i

n̂i − S
∑

i j

Ji jφ(n̂i )âi â
†
jφ(n̂ j ) − 1

2

∑

i j

Ji j n̂i n̂ j (4.3.6)

with J0 = ∑
i Ji j . We see that, due to Eq.4.3.5, this Hamiltonian is not quadratic in

the â†i , âi operators and thereforewe cannotwrite it as a sumof independent harmonic
oscillators. We have, hence, transformed our original Heisenberg Hamiltonian of
interacting spins into a Hamiltonian of interacting bosons.

Check Points

• Write the Holstein–Primakoff transformation.
• What is special about it?
• What is a magnon in this language?
• What is the meaning of the Heisenberg Hamiltonian in terms of the bosonic oper-
ators?

4.4 Spin-Wave Approximation

We will now proceed to reformulate our Hamiltonian into a noninteracting term
(namely, noninteracting magnons), plus interaction terms. If we expand Eq.4.3.5 as
a series

φ(n̂i ) = 1 − n̂i
4S

− n̂2i
32S2

− ... (4.4.1)
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we can write Eq.4.3.6 also as a series

Ĥ = −NS2 J0
2

+
∞∑

n=1

: Ĥ2n : (4.4.2)

with : Ĥ2n : containing n creation and n annihilation operators in normal order (all
â†i to the left, all âi to the right, e.g., for n = 2, â†i â

†
j âmâl). The terms with n > 1,

that is, beyond quadratic, give rise to magnon–magnon interactions as we will see
below. We will, however, first study the spin-wave approximation, where only the
quadratic, noninteracting terms are kept in the expansion Eq.4.4.2

: Ĥ2n := SJ0
∑

i

n̂i − S
∑

i j

Ji j â
†
i â j . (4.4.3)

This truncation of the series is justified at low temperatures, where the number of
excitations (total number of flipped spins) is small compared with the total number
of spins NS. For that to hold, the average number of flipped spins per site has to
be small ni � S, and therefore we can approximate the square root in Eq.4.3.5 to
1 and hence φ(n̂i ) ≈ √

2S. Within this approximation, the spin ladder operators are
indeed approximated by simple harmonic oscillators, while the z component is kept
at saturation

Ŝ+
i ≈ √

2Sâi (4.4.4)

Ŝ−
i ≈ √

2Sâ†i

Ŝzi ≈ S ,

and it can be directly seen that the Heisenberg Hamiltonian Eq. 3.4.1 is quadratic
in the â†i , âi operators. This approximation is completely analogous to the one we
performed when working with the equation of motion, Eq. 4.2.3. Note that, although
the Hamiltonian is quadratic, it is not diagonal in i, j (see Eq.4.4.3). Just as we
did for the equations of motion, we need to go to Fourier space to obtain a diagonal
Hamiltonian and therefore decoupled harmonic oscillators. In this case, we transform
simply the bosonic operators

âk = 1√
N

∑

Ri

e−ik·Ri âi

â†k = 1√
N

∑

Ri

eik·Ri â†i

and,within this approximation,we can show that theHeisenbergHamiltonian reduces
to
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Ĥsw = E(B0) +
∑

k

�ω(k)â†kâk (4.4.5)

where we have added an external magnetic field for completeness, and E(B0) and
ω(k) are given by Eqs. 4.1.10 and 4.1.11, respectively.

The Hamiltonian 4.4.5 describes a system of uncoupled harmonic oscillators. Its
eigenstates are simply products of one-magnon states, that can be obtained from the
vacuum by applying repeatedly â†k

|ψSW〉 =
∏

k

(
â†k

)nk |0〉, (4.4.6)

where nk is the number of magnons with wavevector k, eigenvalue of the number
operator in Fourier representation n̂k = â†kâk. We see that we can write the one-
magnon state defined in Eq.4.1.3 as |k〉 = â†k|0〉. This state is an eigenstate of both
the full Heisenberg Hamiltonian and of the noninteracting Hamiltonian 4.4.5. States
with nk > 1 are, however, only eigenstates of 4.4.5.

Check Points

• What is the meaning of the spin-wave approximation in terms of the Holstein–
Primakoff transformation?

4.5 Magnon–Magnon Interactions

We now proceed to investigate the higher order terms (n > 1) in Eq.4.4.2. We con-
sider for simplicity a Heisenberg Hamiltonian with nearest-neighbor interactions

Ĥn.n. = − J

2

∑

〈i j〉

(
Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j

2
+ Ŝzi Ŝ

z
j

)
. (4.5.1)

Inserting Eqs. 4.3.4 generally, we obtain

Ĥn.n. = − J

2

∑

〈i j〉

⎡

⎣S

√

1 − â†i âi
2S

âi â
†
j

√

1 − â†j â j

2S
+ Sâ†i

√

1 − â†i âi
2S

√

1 − â†j â j

2S
â j

⎤

⎦

− J

2

∑

〈i j〉

(
S − â†i âi

) (
S − â†j â j

)
.

We now keep the first two terms in the expansion of φ(n̂i ), see Eq.4.4.1. Therefore,
simply inserting into Eq.4.5.1
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Ĥn.n. ≈ − J

2

∑

〈i j〉
S

(
1 − â†i âi

4S

)
âi â

†
j

(
1 − â†j â j

4S

)
(4.5.2)

− J

2

∑

〈i j〉
Sâ†i

(
1 − â†i âi

4S

) (
1 − â†j â j

2S

)
â j (4.5.3)

− J

2

∑

〈i j〉

(
S − â†i âi

) (
S − â†j â j

)
. (4.5.4)

To be consistent with the approximation, we keep terms with up to four cre-
ation/annihilation operators in Eq.4.5.2. One obtains

Ĥn.n. ≈ −Nz
J S

2

2

+ J S
∑

〈i j〉

(
â†i âi + â†j â j − â†i â j − â†j âi

)
(4.5.5)

− J
∑

〈i j〉

[
â†i âi â

†
j â j − 1

4

(
â†i â

†
i âi â j + â†i â

†
j â j â j + â†j â

†
i âi âi + â†j â

†
j â j âi

)]

(4.5.6)

with the following terms in the expansion being of order 1/S or higher.
We already saw that the quadratic terms in Eq.4.5.5 can be diagonalized by

going to the Fourier representation of the operators âi , after which one obtains the
Hamiltonian 4.4.5—in this case with B0 = 0 and ω(k) the corresponding one for
nearest neighbors interaction. Here, we pay attention to the new terms, for simplicity
we look at one of them, e.g., the term containing â†j â

†
i âi âi . We denote with � the

nearest-neighbor vector. Hence,

J

4

∑

〈i j〉
â†j â

†
i âi âi = J

4

∑

R j ,�

â†j â
†
j+�â j+�â j+�

= J

4N 2

∑

R j ,�

∑

k1,k2,k3,k4

â†k1e
−ik1·R j â†k2e

−ik2·(R j+�)×

× âk3e
ik3·(R j+�)âk4e

ik4·(R j+�)

= J

4N 2

∑

R j ,�

∑

k1,k2,k3,k4

e−i(k1+k2−k3−k4)·R j ×

× â†k1 â
†
k2
âk3 âk4e

−i(k2−k3−k4)·�

= J

4N

∑

k1,k2,k3,k4

δk1+k2,k3+k4 â
†
k1
â†k2 âk3 âk4×

×
∑

�

e−i(k2−k3−k4)·�

= J

4N

∑

k1,k2,k3,k4

δk1+k2,k3+k4 â
†
k1
â†k2 âk3 âk4

∑

�

eik1·� .
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The last sum is simply a function of k1, which can be given explicitly once the lattice
is known. For example, for a cubic lattice of lattice constant a

γ(k1) =
∑

�

eik1·� = eiak1x + e−iak1x + eiak1y + e−iak1y + eiak1z + e−iak1z

= 2
[
cos (ak1x ) + cos

(
ak1y

) + cos
(
ak1y

)]
.

The term â†k1 â
†
k2 âk3 âk4 corresponds to two magnons with momentum k3 and k4,

respectively, being annihilated, and two magnons with momentum k1 and k2 being
created in the interaction process. The Kronecker delta δk1+k2,k3+k4 ensures conser-
vation of momentum, k1 + k2 = k3 + k4. The other four-magnon interaction terms
in 4.5.5 can be treated analogously. One can easily see that for long wavelength
magnons (i.e., k small), the scattering cross section of such processes go as (ka)4

and is therefore small. Further interaction terms (six-magnon, etc) are suppressed by
factors of increasing order in 1/S [4].

Including dipole–dipole interactions has two main effects: (i) it modifies the dis-
persion relationω(k),which in that case depends on the angle between thewavevector
k and the equilibrium direction of the saturated spins, since the dipole–dipole inter-
action is anisotropic. This gives rise to a spin-wave manifold. (ii) New three-magnon
momentum-conserving interaction terms, e.g., â†k1 â

†
k2 âk3 or âk1 âk2 â

†
k3 are allowed:

one magnon can split into two, and vice versa.

Check Points

• Why do we get magnon–magnon interactions?
• What conservation rules do they fulfill and where do they come from?



Chapter 5
Magneto-Optical Effects

In this chapter we will explore the interaction between light and magnetism in mag-
netic insulators. The coupling mechanism is the Faraday effect, in which the plane of
polarization of the light rotates as it goes through a magnetized material. In turn, the
light exerts a very tiny effective “magnetic field” on the spins: this is called the inverse
Faraday effect and it is an example of backaction. In what follows we will go back
to the classical realm to obtain the coupling term. This will allows us to, by proper
quantization of the classical coupling energy term, obtain a coupling Hamiltonian
between magnons and the quanta of light, photons.

5.1 Electromagnetic Energy and Zero-Loss Condition

We go back now to the full Maxwell equations in matter, in contrast to the magne-
tostatic approximation we used throughout Chap. 1

∇ × H = ∂D
∂t

+ jF (5.1.1)

∇ × E = −∂B
∂t

(5.1.2)

∇ · D = ρ (5.1.3)

∇ · B = 0 . (5.1.4)

These equations describe completely an electromagnetic system once we give the
constitutive equations

Di = εi j E j (5.1.5)

Bi = μi j Hj
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where we used the Einstein convention of summation over repeated indices. These
constitutive equations assume an instantaneous response of the system: the response
does not depend on time and the system has no memory. This is referred to as a
dispersionless. For an isotropic system, the permittivity and permeability tensors are
diagonal and proportional to the identity, εi j = ε0εrδi j , μi j = μ0μrδi j and Eq. 5.1.5
reduce to the scalar versions, D = ε0εrE and B = μ0μrH.

We will argue that we can represent the coupling of light and magnetization just
by using the permittivity tensor. Our aim now is to obtain symmetry conditions on the
permittivity tensor εi j in the presence of a static magnetization in the material where
the light propagates. For that we will use conservation of electromagnetic energy,
given by a continuity equation involving the energy flux density. The instantaneous
electromagnetic power per unit area is given by the Poynting vector

P = E × H . (5.1.6)

If we consider volume V bounded by a surface S, the energy per unit time entering
the volume is given by

−
∮
S
P · ds

where ds is an area element with vector pointing outwards. This power can be stored
in the volume in the form of an energy densityW , or dissipated—we denominate the
dissipated power Pd . We can hence write

−
∫
V

∇ · Pd3r =
∫
V

∂W

∂t
d3r +

∫
V
Pdd

3r

where on the LHS we have used Stokes theorem. Since the volume is arbitrary, we
have

∇ · P + ∂W

∂t
+ Pd = 0

which has the form of a continuity equation. It remains to identify the terms W and
Pd in terms of the electromagnetic fields. For that we look at the Maxwell equations
and we see that by taking the scalar product of 5.1.1 with E, of 5.1.2 with H, and
subtracting 5.1.2 from 5.1.1, we can obtain an equation for the Poynting vector P by
using the vector identity

∇ · (A × C) = C · (∇ × A) − A · (∇ × C) . (5.1.7)

Putting all together we obtain the Poynting theorem

∇ · (E × H) + H · ∂B
∂t

+ E · ∂D
∂t

+ E · jF = 0 (5.1.8)

∇ · (E × H) + Hi
∂

(
μi j Hj

)
∂t

+ Ei
∂

(
εi j D j

)
∂t

+ E · jF = 0 , (5.1.9)
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where in the last line we have used Eq. 5.1.5. For dispersionless, isotropic media, we
obtain

∇ · (E × H) + μ0μr

2

∂H 2

∂t
+ ε0εr

2

∂E2

∂t
+ E · jF = 0 ,

from where we can identify

Pd = E · jF
W = μ0μr

2
H 2 + ε0εr

2
E2

as the dissipated power density and instantaneous energy density stored in the mag-
netic and electric fields, respectively.

We are interested however in time-averaged quantities. To proceed further we
consider for simplicity monochromatic fields in complex notation

E(t) = Re
{
E(ω)e−iωt

}
H(t) = Re

{
H(ω)e−iωt

}
.

It can be easily shown that the time average of the product of two oscillating fields
A(t) = A0 cos(ωt), B(t) = B0 cos(ωt + φ) over one period T = 2π/ω is given sim-
ply by

〈A(t)B(t)〉T = 1

2
Re

{
Ã B̃∗

}
(5.1.10)

where

A(t) = Re
{
A0e

−iωt
} = Re

{
Ãe−iωt

}

B(t) = Re
{
B0e

−iφe−iωt
} = Re

{
B̃e−iωt

}
.

As a rule, one works with the complex fields and takes the real part at the end of
the calculation. In an abuse of notation, the tilde notation is dropped. We will use
Eq. 5.1.10 to obtain a time average of the Poynting theorem given in Eq. 5.1.8. For
that we write Maxwell equations in frequency space, in particular

∇ × H = −iωD + jF (5.1.11)

∇ × E = iωB . (5.1.12)

To obtain the Poynting theorem in complex form, we take the complex conjugate
of Eq. 5.1.11 and perform the scalar product with E, and take the scalar product of
Eq. 5.1.12 with H∗. Subtracting the resulting equations and using again the vector
identity 5.1.7 we obtain

∇ · (
E × H∗) + iω

(
E · D∗ − H∗ · B) + E · j∗F = 0 ,
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form where the time average is easily obtained as

Re
{∇ · (

E × H∗) + iω
(
E · D∗ − H∗ · B) + E · j∗F

} = 0 . (5.1.13)

For losslessmedia, 〈∇ · (E × H∗)〉T must vanish, since all power that enters a volume
must leave within one cycle. Moreover, if there are no free currents, the dissipated
power E · j∗F is also zero. Therefore, in lossless media

Re
{
iω

(
E · D∗ − H∗ · B)} = 0 . (5.1.14)

Moreover, in the frequency domain dispersive effects are included in a simple way
by frequency-dependent permittivity and permeability tensors

D(ω) = ε̄(ω) · E(ω)
B(ω) = μ̄(ω) · H(ω)

where the bar indicates that ε̄(ω), μ̄(ω) are matrices. Equation 5.1.14 then can be
written as [4, 12]

iω

2

[
E∗ · (

ε̄† − ε̄
) · E + H∗ · (

μ̄† − μ̄
) · H] = 0 (5.1.15)

where † indicates complex conjugate and transpose: (εi j )† = ε∗
j i (note that the same

expression can be obtained directly from Eq. 5.1.8 by replacing the real fields using
Re {z} = (z + z∗)/2 and noting that 〈zz〉T = 〈z∗z∗〉T = 0).We deduce therefore that
for lossless media

ε̄† = ε̄ (5.1.16)

μ̄† = μ̄ ,

that is, the permittivity and permeability must be Hermitian matrices. Note that if the
material is isotropic and ε̄(ω), μ̄(ω) can be written as in principle complex scalars
ε(ω) = ε′(ω) + iε′′(ω),μ(ω) = μ′(ω) + iμ′′(ω), the zero-loss condition implies that
the imaginary parts ε′′(ω) and μ′′(ω) must vanish.

To define the average electromagnetic energy density in the presence of dispersion
is a little bit more subtle [12]. We give here for completeness the corresponding
expression without proof

〈W 〉T = 1

4

[
E∗ · ∂ (ωε̄)

∂ω
· E + H∗ · ∂ (ωμ̄)

∂ω
· H

]
. (5.1.17)

If ε̄ and μ̄ are independent of frequency, this expression reduces to

〈W 〉T = 1

4

[
E∗ · ε̄ · E + H∗ · μ̄ · H]

(5.1.18)

as expected.



5.1 Electromagnetic Energy and Zero-Loss Condition 65

1. Exercise: Prove Eq. 5.1.15 starting from 5.1.14.

Check Points

• Obtain Eq. 5.1.13 from Maxwell equations
• What is the zero loss condition?
• What does it tell us about the symmetries of the permittivity tensor?

5.2 Permittivity Tensor and Magnetization

In the following section we will use the permittivity tensor ε̄ to describe the Faraday
effect in a magnetized sample. For that we will use the symmetry properties of ε̄ in
the presence of a permanent magnetization, which breaks time reversal invariance.
If we write the permittivity tensor explicitly separating the real and imaginary parts

εi j = ε′
i j + iε′′

i j ,

the zero-loss condition 5.1.16 tells us that real and imaginary parts are respectively
symmetric and antisymmetric matrices:

ε′
i j (M) = ε′

j i (M) (5.2.1)

ε′′
i j (M) = −ε′′

j i (M) ,

where we have made explicit a possible dependence on the magnetization M. On
the other hand, Onsager reciprocity relations for response functions dictate how the
permittivity transforms under time reversal symmetry

ε′
i j (M) = ε′

j i (−M) (5.2.2)

ε′′
i j (M) = ε′′

j i (−M) ,

where the time reversed form of ε̄ consists in transposing the matrix and at the same
time inverting the magnetization vector. We see therefore that the real and imaginary
parts are also symmetric and antisymmetric in the magnetization. Putting all together
we obtain

ε′
i j (M) = ε′

j i (M) = ε′
j i (−M) (5.2.3)

ε′′
i j (M) = −ε′′

j i (M) = ε′′
j i (−M) .

In linear response, the permittivity depends linearly on the magnetization. This is
valid as long as the effect of the magnetization on the permittivity is small. To fulfill
conditions 5.2.3 to first order in the magnetization we write [12]
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εi j (M) = ε0
(
εrδi j − i f εi jkMk

)
(5.2.4)

where we have assumed thematerial is isotropic, and f is a small material-dependent
parameter related to the Faraday rotation as we show below. A material for which
the permittivity takes this form is denominated gyrotropic.

1. Exercise: Prove that Eq. 5.2.4 fulfills 5.2.3.

Check Points

• Explain how Eq. 5.2.4 is obtained

5.3 Faraday Effect

For optical frequencies one can usually safely take the permeability of a dielec-
tric as the vacuum permeability μ0, even for a magnetic material. This amounts to
neglecting the interaction of the small oscillating magnetic field part of the optical
electromagnetic field with the material. In turn, the interaction between the electric
part of the optical field and the magnetization in the sample is modeled by the per-
mittivity given in Eq. 5.2.4. The magnetizationM, even if it has a time dependence,
it it much slower than the optical fields and therefore it is well defined.

To understand how the magnetization dependent permittivity in Eq. 5.2.4 encap-
sulates the Faraday effect wewill first derive the Fresnel equation for the optical field,
starting from theMaxwell equations 5.1.11 and 5.1.12 in the absence of free currents,
jF = 0. We are interested in light propagating through a material, we therefore write
the electric and magnetic fields as plane waves of frequency ω and wavevector k

E(t, r) = Ee−i(ωt−k·r)

H(t, r) = He−i(ωt−k·r) .

In momentum and frequency representation, Eqs. 5.1.11 and 5.1.12 read

k × E = μ0ωH (5.3.1)

k × H = −ωD . (5.3.2)

Inserting Eq. 5.3.1 into 5.3.2, using D = ε̄ · E and the product rule a × (b × c) =
b(a · c) − c(a · b) one obtains

k2

μ0ω2

[
E − k(k · E)

k2

]
= ε̄ · E . (5.3.3)



5.3 Faraday Effect 67

This is a form of the Fresnel equation, and it determines the dispersion relation of the
electromagnetic wave (that is, ω(k)) by imposing the determinant of its coefficients
to be zero. In components

k2

μ0ω2

[
δi j E j − ki k j E j

k2

]
= εi j E j

and therefore

det

{
k2

μ0ω2

[
δi j − ki k j

k2

]
− εi j

}
= 0 .

The term k(k · E)/k2 gives us simply the projection of the electric field along
the propagation direction k/k. Whereas in vacuum the electric field E is purely
transverse, in a medium the purely transverse field is actually D, see Eq. 5.3.2. We
will work now however with the particular form of the permittivity given in Eq. 5.2.4,
and consider the direction of propagation k/k to coincide with the magnetization
axis, M = Mẑ, in which case the E field is also transverse as one can easily verify
by using the resulting form of the permittivity tensor

ε̄ = ε0

⎛
⎝ εr −i f M 0
i f M εr 0
0 0 εr

⎞
⎠ . (5.3.4)

The Fresnel equation reduces therefore to

∣∣∣∣∣
(

k2

μ0ω2 − ε0εr −i f M

i f M k2

μ0ω2 − ε0εr

)∣∣∣∣∣ = 0

with solutions

k2± =
(ω

c

)2
(εr ± f M) (5.3.5)

wehere we have used that c = 1/
√

ε0μ0. Inserting these solutions back into Eq. 5.3.3
with ε̄ given by Eq. 5.3.4 (in this case only two dimensional, since Ez = 0) we obtain

Ex = ∓i Ey ,

with∓ corresponding to k2±. We have therefore obtained two solutions for the propa-
gating wave along ẑ, with the same amplitude and cicularly polarized in the xy plane,
but with opposite polarizations for k+ and k−:

E±(z, t) = E0Re
{(
êx ± i êy

)
ei(k±z−ωt)

}
. (5.3.6)

To derive the Faraday rotation we consider now an EM wave propagating in the
medium such that at z = 0 it is linearly polarized along x̂ with amplitude E0,
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E(z = 0, t) = E0êxe−iωt . (5.3.7)

The linear combination of Eq. 5.3.6

E(z, t) = 1

2

[
E+(z, t) + E−(z, t)

]

fulfills the condition 5.3.7. We therefore have as solution for the propagating wave
E(z, t) = Re

{
Ex êx + Ey êy

}

Ex = E0

2

(
eik+z + eik−z

)

Ey = i
E0

2

(
eik+z − eik−z

)
.

After the wave propagated a distance L through the material

Ey

Ex
= tan

[(
k− − k+

2

)
L

]
,

which indicates that the plane of polarization of the light rotated by an amount θFL ,
where

θF = k− − k+
2

is the Faraday rotation per unit length. This is depicted schematically in Fig. 5.1.
Using Eq. 5.3.5 and f M 	 εr we obtain

θF = ω

2c
√

εr
f M . (5.3.8)

Check Points

• What is the Faraday effect?

Fig. 5.1 Vertically polarized
light rotates its angle of
polarization as it goes
through a magnetized
material

θFL

L

magnetization M
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5.4 Magneto-Optical Energy

In the previous sections we saw that the magnetization in a medium modifies the
permittivity tensor, which acquires an antisymmetric imaginary term due to the
breaking of time reversal symmetry. As light goes through the material, it expe-
riences this effective permittivity which we saw leads to the Faraday effect. Light
and magnetization in the sample are therefore coupled. To obtain this coupling, we
look at the electromagnetic energy obtained from Eq. 5.1.18 by using the permit-
tivity Eq. 5.2.4. We see that the magnetization-dependent part of the permittivity
introduces a correction to the usual electromagnetic energy expression, given by

UMO = − i

4
f ε0

∫
d3rM(r) · [

E∗(r) × E(r)
]
. (5.4.1)

One can easily prove that this term is real. In terms of the Faraday rotation per unit
length this can be rewritten as

UMO = θF

√
εr

ε0

∫
d3r

M(r)
M

· ε0

2iω

[
E∗(r) × E(r)

]
. (5.4.2)

The term
Slight(r) = ε0

2iω

[
E∗(r) × E(r)

]
(5.4.3)

is called the optical spin density and it is related to the helicity of light. For example,
for circularly polarized light Slight points perpendicular to the plane of polarization
with a direction given by the right-hand-rule.

We know from the previous section that the magnetization causes the plane of
polarization of the light to rotate. From Eq. 5.4.1 we see that the light itself acts as an
effective magnetic field on the magnetization (compare with the usual expression for
the Zeeman energy). This gives rise to the inverse Faraday effect, which takes into
account the effect of the light on the magnetization dynamics of the sample. This
effect is usually small, one can show that the effective light-induced magnetic field
for YIG (Yttrium Iron Garnet, a magnetic insulator, widely used in both technical
applications and current experiments) is of the order of 10−11T per photon/μ3. For
comparison, the earth’s magnetic field is of the order of 10−6T! We will see however
in the following chapter that this value can be enhanced by using an optical cavity,
effectively “trapping” photons.

1. Exercise: Derive Eq. 5.4.2 starting from 5.1.18.

Check Points

• Obtain the correction to the electromagnetic energy if a medium is magnetized.



Chapter 6
Modern Topics: Cavity Optomagnonics

In this last chapter we will put together all concepts we learned so far to derive the
basics of a topic of current research: Cavity Optomagnonics. In these systems, a
magnetic insulator material forms a cavity for the light, which is used to enhance the
magnon–photon coupling. We call this the optomagnonic coupling. As we pointed
out in the previous chapter, the Faraday effect is usually a small effect, which depends
on the Faraday rotation constant of the material and also on the path’s length of the
light inside of the material. Since in a cavity the light is “trapped”, this effectively
enhances the path’s length and therefore the coupling. This is an intuitive way of
seeing the enhancement, we will see this more formally in the next sections. For that
weneedfirst to learn about optical cavities and the quantization of the electromagnetic
field.

6.1 Quantization of the Electromagnetic Field

We start by quantizing a single-mode field in a cavity formed by perfectly conducting
walls at z = 0 and z = L . We summarize here the most important concepts, a more
thorough discussion can be found for example in Refs. [13, 14]. We assume further
the electric field to be polarized along x , E = Ex (z, t)êx . The boundary condition
therefore implies

Ex (z = 0, t) = Ex (z = L , t) = 0 . (6.1)

From Maxwell equations in vacuum and no sources,

∇ × E = −∂B
∂t

∇ · B = 0 (6.2)

∇ × B = μ0ε0
∂E
∂t

∇ · E = 0 (6.3)
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we obtain a wave equation for the electric field

∇2E = μ0ε0
∂2E
∂t2

(6.4)

which in terms of E = Ex (z, t)êx simplifies to

∂2Ex (z, t)

∂z2
− 1

c2
∂2Ex (z, t)

∂t2
= 0 . (6.5)

The solution of Eq. 6.5 satisfying the boundary conditions in Eq. 6.1 is simply

Ex (z, t) =
√(

2ω2
n

V ε0

)
q(t) sin (knz) (6.6)

with ωn

c
= kn = πn

L
. (6.7)

In Eq. 6.6, q(t) has units of length and V = LS is the volume of the cavity, where S
is its cross-section. From the left Eq. in 6.3 one obtains B = By(z, t)êy with

By(z, t) = μ0ε0

kn

√(
2ω2

n

V ε0

)
q̇(t) cos (knz) . (6.8)

Inserting Eqs. 6.6 and 6.8 into the electromagnetic energy

EEM = 1

2

∫
dV

(
ε0E2 + 1

μ0
B2

)

one obtains

EEM = 1

2

(
ω2
nq

2 + p2
)

(6.9)

where we have defined p = q̇ the canonical momentum of a “particle” of unit mass.
Eq. 6.9 is the energy of a harmonic oscillator of unit mass. We can now proceed to
quantize the theory by

q → q̂

p → p̂

and imposing the commutator
[
q̂, p̂

] = i�. It is convenient to introduce the bosonic
creation and annihilation operators

â = 1√
2�ωn

(
ωnq̂ + i p̂

)
â† = 1√

2�ωn

(
ωnq̂ − i p̂

)
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which satisfy
[
â, â†

]
in terms of which the electric and magnetic field can be

expressed as

Êx (z, t) =
√(

�ωn

V ε0

) (
â + â†

)
sin (knz) (6.10)

By(z, t) =
√(

�ωn

V ε0

) (
â − â†

)
cos (knz) . (6.11)

The energy Eq. 6.9 gives rise to the usual harmonic-oscillator Hamiltonian

ĤEM = �ωn

(
â†â + 1

2

)
.

The time dependence of the ladder operators can be obtained from the Heisenberg
equation of motion and is given by

â(t) = â(0)e−iωt

â†(t) = â†(0)eiωt .

Note that an eigenstate of the number operator n̂ = â†â, n̂|n〉 = n|n〉, is an energy
eigenstate but the electric field operator’s expectation value vanishes

〈n|Êx |n〉 = 0

and therefore it is not well defined. The expectation value squared field 〈n|Ê2
x |n〉 is

however finite, as one can easily prove. This reflects the uncertainty in the phase of
the electric field, which is conjugate to the number operator. We call the excitation
with energy �ωn a photon.

We now proceed to the quantization of multimode fields in a 3D cavity. For that,
it is convenient to use the Coulomb gauge

∇ · A(r, t) = 0 , (6.12)

in which both electric and magnetic field can be expressed in terms of the vector
potential A(r, t)

E(r, t) = −∂A(r, t)
∂t

(6.13)

B(r, t) = ∇ × A(r, t) . (6.14)

From Maxwell’s equations, one obtains a wave equation for the vector potential

∇2A − 1

c2
∂2A
∂t

= 0
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which can be solved by separating time end space variables. It is customary to split
the time dependence

A(r, t) = A+(r, t) + A−(r, t)

such that

A+(r, t) =
∑
k

ckuk(r)e−iωk t

A−(r, t) =
∑
k

c∗
ku

∗
k (r)e

iωk t

where ωk ≥ 0. The mode-functions uk are solutions of(
∇2 + ωk2

c2

)
uk(r) = 0

satisfying orthonormality

∫
dVu∗

k (r)uk ′(r) = δk,k ′

and the appropriate boundary conditions. The index k indicates both the mode and
the polarization vector. Moreover, due to the Coulomb gauge

∇ · uk(r) = 0 . (6.15)

Guided by our one-mode example, we quantize replacing the amplitudes in the sum
over modes by creation and annihilation operators

Â(r, t) =
∑
k

√
�

2ωkε0

[
âkuk(r)e−iωk t + â†kukˆ*(r)e

iωk t
]

from which, using Eq. 6.13, we obtain the electric field operator

Ê(r, t) = Ê+(r, t) + Ê−(r, t) = i
∑
k

√
�ωk

2ε0

[
âkuk(r)e−iωk t − â†kukˆ*(r)e

iωk t
]

(6.16)
with the same convention for Ê±(r, t) as for Â±(r, t). Using Eq. 6.14 we can obtain
the corresponding expression for the magnetic field. The bosonic ladder operators
âk , â

†
k as defined are dimensionless and satisfy the usual commutation relations

[
âk, âk ′

] =
[
â†k , â

†
k ′

]
= 0[

âk, â
†
k ′

]
= δk,k ′
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and the correspondingHamiltonian is that of a collection of non-interacting harmonic
oscillators

HEM =
∑
k

�ωk

(
â†k âk + 1

2

)
.

The sum over modes has no cutoff and therefore the factor 1/2 leads to a divergence.
In these noteswewill notworry about that, sincewewill alwaysworkwith differences
of energies, where this factor cancels out. We will therefore simply omit this term
in the following. The energy eigenstates are also eigenstates of the number operator
n̂k = â†k âk

n̂k |nk〉 = nk |nk〉
Enk = �ωk

(
nk + 1

2

)
.

The states |nk〉 form an orthonormal basis of the Hilbert space and are called number
orFock states, where nk gives the number of photons in state k. A general multi-mode
state can be written as

|ψ〉 =
∑

n1,n2,...

cn1,n2,...|n1, n2, ...〉 .

In the simplest example, one uses periodic boundary conditions in a cubic box of
side length L . In this case,

uk(r) = 1

L3/2
êλeik·r

with k = 2π/L
(
nx , ny, nz

)
, ni = 0,±1,±2, ... and λ = 1, 2 indicating the polar-

ization, which from Eq. 6.15 must fulfill

êλ · k = 0 .

One can analogously use reflecting boundary conditions, where the solutions are
standing waves as in the single mode we studied above. Note that in this case the
normalization factor of Ê(r, t) and the quantization of k will be different.

1. Exercise: Derive Eq. 6.4
2. Exercise: Derive Eq. 6.9

Check Points

• Write a general expression for the quantized electric field.
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6.2 Optical Cavities as Open Quantum Systems

Cavities are usually open systems, in contact with an environment both because, for
example, the mirrors are not perfect, allowing contact to a bath of photons or/and
phonons, and because we want to have access to the cavity by means of an external
probe. The environment (also called bath, or reservoir) is assumed to be very large
and in thermal equilibrium, and it is modeled as a collection of harmonic oscillators.
The simplest Hamiltonian of the cavity plus bath is written as

Ĥ = ĤS + ĤR + ĤI

where ĤS , ĤR , and ĤI are the cavity, reservoir, and interaction Hamiltonians respec-
tively

ĤS = ��â†â

ĤR =
∑
k

�ωk b̂
†
k b̂k

ĤI = �

∑
k

(
gk â

†b̂k + g∗
k b̂

†
k â

)
,

where we have taken for simplicity only one mode for the cavity â with frequency�.
The interaction Hamiltonian represents an excitation in the cavity being converted
into one in the reservoir and vice-versa, with coupling constant gk .

Our aim is to obtain an effective equation of motion for the cavity mode â which
encapsulates the effect of the bath [15]. This procedure is denominated to integrate
out the bath, and it means that, since we are not interested in the dynamics of the
bath per se, we want to eliminate these degrees of freedom and just retain the ones
we are interested in, in this case, the single cavity mode. We begin by writing the
Heisenberg equations of motion for both the cavity mode and the reservoir modes

˙̂a(t) = −i�â(t) − i
∑
k

gk b̂k(t) (6.17)

˙̂bk(t) = −iωk b̂(t) − ig∗
k â(t) . (6.18)

We can integrate formally Eq. 6.18 to obtain

b̂k(t) = b̂k(0)e
−iωk t − ig∗

k

∫ t

0
dt ′â(t ′)e−iωk(t−t ′) , (6.19)

where the first term corresponds to the free evolution of b̂k and the second one is due
to the interaction with the cavity. Substituting Eq. 6.19 into 6.17 we obtain

˙̂a(t) = −i�â(t) − i
∑
k

gk b̂k(0)e
−iωk t −

∑
k

|gk |2
∫ t

0
dt ′â(t ′)e−iωk(t−t ′) . (6.20)
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We now transform the cavity operators to a rotating frame with frequency �

Â(t) = â(t)ei�t .

We see that this transformation preserves the bosonic commutation relations

[
Â(t), Â(t)

]
=

[
Â†(t), Â†(t)

]
= 0[

Â(t), Â†(t)
]

= 1

and removes the free, fast rotating term from the equation of motion:

˙̂A(t) = −i
∑
k

gk b̂k(0)e
−i(�−ωk )t −

∑
k

|gk |2
∫ t

0
dt ′ Â(t ′)e−i(�−ωk )(t−t ′) . (6.21)

The first term in Eq. 6.21 is denominated the noise operator

F̂(t) = −i
∑
k

gk b̂k(0)e
−i(�−ωk )t .

We see that this operator is composed of many different frequencies and therefore
oscillates rapidly in time. Its effect on the cavity mode is that of exerting random
“quantum kicks”. Its expectation value for a reservoir in thermal equilibrium is easily
shown to be zero

〈F̂(t)〉R = 0

and therefore this operator is the quantum analog to the noise due to the environment
responsible for the Brownian motion of a classical particle. The second term in
Eq. 6.21

B̂ba = −
∑
k

|gk |2
∫ t

0
dt ′ Â(t ′)e−i(�−ωk )(t−t ′) (6.22)

is due to backaction: changes in the cavity mode affect slightly the bath, which in
turn acts back onto the cavity. We will see in the following that this term leads to
decay of the cavity mode, which corresponds to dissipation of energy from the cavity
into the environment.

To analyze the second term in Eq. 6.21 we use that the environment volume is
large, which allows us to take the continuum limit for the bath modes. We write
the sum over modes directly in terms of a density of states (DOS) which we do not
specify, this will depend on the details of the bath. The DOSD(ωk) gives the number
of modes with frequency between ωk and ωk + d!k. In terms of the DOS, the second
term in Eq. 6.21 is

B̂ba = −
∫ ∞

0
dωkD(ωk) |g(ωk)|2

∫ t

0
dt ′ Â(t ′)e−i(�−ωk )(t−t ′) . (6.23)
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To perform this integral we have to resort to approximations that rely on the physics
of the system. We will work with what is known as the Weisskopf-Wigner approxi-
mation, which is at its core a Markovian approximation: the evolution of the system
of interest is local in time. This implies a separation of time scales between the bath,
which we assume to be the fast, and the system (in our case, the cavity mode) which
is slow. The information from the system that goes into the reservoir is lost, since
the bath fluctuates very rapidly. The system therefore is said to have no memory. The
timescale of the bath is defined by the inverse bandwidth 1/W . If the rate of variation
Â(t) is slow compared to this timescale, we can replace Â(t ′) → Â(t) in Eq. 6.23,
and extend the integral from t to ∞

B̂ba ≈ −
∫ ∞

0
dωkD(ωk) |g(ωk)|2 Â(t)

∫ ∞

0
dτe−i(�−ωk )τ

where we defined τ = t − t ′. We use now that∫ ∞

0
dτe−i(�−ωk )τ = πδ (ωk − �) − iP

(
1

ωk − �

)
,

where the last term indicates the principal part. We neglect this term for the moment,
since it leads to a frequency shift (note that its contribution is proportional to the
cavity operator, and has an i in front). Evaluating the Delta function we obtain

B̂ba ≈ − Â(t)πD(�) |g(�)|2

and therefore the effective equation of motion for the cavity mode in the rotating
frame is ˙̂A(t) = −γ

2
Â(t) + F̂(t) , (6.24)

with
γ = πD(�) |g(�)|2

the cavity decay rate. Eq. 6.24 is a quantum Langevin equation and the decay rate
γ and the noise operator F̂(t) can be shown to fulfill the fluctuation-dissipation
theorem

γ = 1

n̄

∫ ∞

−∞
dτ 〈F̂†(τ )F̂(0)〉R

in equilibrium, with

n̄ = 〈b̂†(�)b̂(�)〉R = 1

e�β� − 1

the thermal occupation of the bath at the cavity frequency. In the Markov approxi-
mation the noise correlators fulfill
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〈F̂†(t ′)F̂(t ′′)〉R = γn̄δ
(
t ′ − t ′′

)
〈F̂(t ′)F̂†(t ′′)〉R = γ (n̄ + 1) δ

(
t ′ − t ′′

)
.

In particular for the vacuum one obtains

〈0|F̂(t ′)F̂†(t ′′)|0〉R = γδ
(
t ′ − t ′′

)
.

This delta-correlated noise shows clearly that the dynamics of the bath is fast com-
pared to that of the systemof interest, and that it has nomemory since every “quantum
kick” is uncorrelated with the previous one. Usually the noise operator is normalized
to an operator Âin such that

〈0| Âin(t
′) Â†

in(t
′′)|0〉R = δ

(
t ′ − t ′′

)
and the equation of motion is written as

˙̂A(t) = −γ

2
Â(t) + √

γ Âin(t)

or, in the original frame,

˙̂a(t) = −i�â(t) − −γ

2
â(t) + √

γâin(t) .

For the decay rate sometimes κ = γ/2 is used.

Check Points

• Write the total Hamiltonian of a cavity coupled to an environment, and explain
each term

• How does one obtain an effective equation of motion for the cavity mode? What
approximations are involved?

• Write the effective equation of motion for the cavity mode
• What is the meaning of κ (or γ)?

6.3 The Optomagnonic Hamiltonian

We will now put together all the elements from the previous sections to derive the
optomagnonic Hamiltonian, that is, the Hamiltonian for a system in which optical
photons couple to magnons. For that, we will quantize the interaction term given
by the Faraday effect, Eq. 5.4.1. This section and the next follow the recent work
in Ref. [16].

We can quantize the electric field following Sect. 6.1, Ê+(r, t) = ∑
β Eβ(r)âβ(t)

and correspondingly Ê−(r, t) = ∑
β E

∗
β(r)â†β(t), where Eβ(r) indicates the βth
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eigenmode of the electric field (eigenmodes are indicated with greek letters in what
follows). Themagnetization requiresmore careful consideration, sinceM(r)depends
on the local spin operator which, in general, cannot be written as a linear combination
of bosonic modes. There are however two simple cases: (i) the spin-wave approxima-
tion, which is valid for small deviations of the spins from equilibrium and, as we saw
in Sect. 4.4, the Holstein-Primakoff representation can be truncated to linear order in
the bosonic magnon operators, and (ii) considering the homogeneous Kittel mode1

M(r) = M, for which we can work simply with the resulting macrospin S. In the
following we treat this second case. Although it is valid only for the homogeneous
magnon mode, it allows us to capture the nonlinear dynamics of the spin.

From Eq. 5.4.1 we obtain the coupling Hamiltonian

ĤMO = �

∑
jβγ

Ŝ jG
j
βγ â

†
β âγ (6.25)

with coupling constants

G j
βγ = −i

ε0 f Ms

4�S
ε jmn

∫
drE∗

βm(r)Eγn(r) , (6.26)

where we replaced Mj/Ms = Ŝ j/S, with S the extensive total spin (scaling like
the magnetic mode volume). G j are hermitian matrices which in general cannot be
simultaneously diagonalized. For simplicity, in the following we treat the case of a
strictly diagonal coupling to some optical eigenmodes (G j

ββ �= 0 but G j
αβ = 0).

As an example, we consider circular polarization (R/L) in the y − z-plane. In
this case, the optical spin density is perpendicular to this plane, and therefore Gx

is diagonal while Gy = Gz = 0. The Hamiltonian HMO is then diagonal in the the
basis of circularly polarized waves, eR/L = 1√

2

(
ey ∓ iez

)
. We choose moreover the

magnetization axis along the ẑ axis. This setup is shown schematically in Fig. 6.1. The
rationale behind choosing the coupling direction perpendicular to the magnetization
axis, is to maximize the coupling to the magnon mode, that is to the deviations of
the magnetization with respect to the magnetization axis. The light field hence only
couples to the x component of the spin operator, Ŝx .

Again for simplicity, we consider the case of plane waves for quantizing the
electric field. Therefore

Ê+(−)(r, t) = +(−)i
∑

j

e j

√
�ω j

2ε0εV
â(†)
j (t)e+(−)ikj·r ,

where V is the volume of the cavity, k j the wave vector of mode j and we have
identified the positive and negative frequency components of the field as E → Ê+,

1The Kittel mode is a spin wave with k = 0, so that all spins precess in phase and can be replaced
by a precessing macrospin.
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Fig. 6.1 The Kittel mode
with frequency � is excited
on top of a homogeneous
magnetic ground state with
magnetization along the ez
axis. The same material
serves as the optical cavity.
The optical mode is right
circularly polarized in the
y − z plane and the optical
spin density points along the
ez axis

Kittel mode

Optical mode

E∗ ×E

ex ey

ez

ezΩ

E∗ → Ê−. In the normalization of the fieldswe have used the relative permittivity ε of
themagnetic insulator, since the electric fields considered live in the cavity formed by
the material. The factor of ε0ε in the denominator ensures the normalization �ω j =
ε0ε〈 j |

∫
d3r|E(r)|2| j〉 − ε0ε〈0|

∫
d3r|E(r)|2|0〉, which corresponds to the energy

of a photon in state | j〉 above the vacuum |0〉. For two degenerate (R/L) modes at
frequency ω, using Eq. 5.3.8 we see that the frequency dependence cancels out and
we obtain the simple form for the optomagnonic Hamiltonian

HMO = �GŜx (â
†
L âL − â†RâR)

with

G = 1

S

c θF

4
√

ε
.

In general however an overlap factor ξ ≤ 1 appears, which takes into account that
there is a mismatch between the optical and magnonic mode volumes. For exam-
ple, current experiments couple optical whispering gallery modes (WGM) in a YIG
sphere to the magnetic Kittel mode [17–19]. The Kittel mode is a bulk mode, and
lives on the whole sphere, that is, the magnetic mode volume equals the volume
of the sphere. The WGMs live however very close to the surface, and therefore its
volume is smaller than the magnetic one, leading to and overlap factor ξ < 1,

Gx
LL = −Gx

RR = G = 1

S

c θF

4
√

ε
ξ . (6.27)

We now consider an incoming laser, which drives only one of the two circular
polarizations in the cavity. The total Hamiltonian of the cavity optomagnonic system
is therefore given simply by
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H = −��â†â − ��Ŝz + �GŜx â
†â , (6.28)

where â† (â) is the creation (annihilation) operator for the cavity mode photon which
is being driven. We work in a frame rotating at the laser frequency ωlas , and � =
ωlas − ωcav is the detuning versus the optical cavity frequency ωcav . In Eq. 6.28 we
included that the dimensionless macrospin S = (Sx , Sy, Sz) has a magnetization axis
along ẑ, and a Larmor precession frequency�which can be controlled by an external
magnetic field.

1. Exercise: show that in the rotating frame the free Hamiltonian for a cavity
driven mode is given by ��â†â.

Check Points

• Derive the optomagnonic coupling Hamiltonian.

6.4 Coupled Equations of Motion and Fast Cavity Limit

The coupled Heisenberg equations of motion are obtained by using
[
â, â†

] = 1,[
Ŝi , Ŝ j

]
= iεi jk Ŝk . We next focus on the classical limit, where we replace the oper-

ators by their expectation values:

ȧ = −i (GSx − �) a − κ

2
(a − αmax)

Ṡ = (
Ga∗a ex − � ez

) × S + ηG

S
(Ṡ × S) . (6.29)

From Sect. 6.2, we know our optical cavity is an open system and the optical fields
are subject to a decay rate. Here we introduced the cavity decay rate κ phenomeno-
logically, its value is in general determined by the scpecific experimental setup. We
also included the driving laser amplitude αmax for the optical mode. This gives the
steady state amplitude of the light field when it is not coupled to the magnetics and
for zero detuning of the driving laser. We also added an intrinsic damping for the
spin ηG, which can be due to phonons and defects and it is material dependent. This
coefficient is denominated Gilbert damping and, whereas it does not change the
magnitude of the spin vector, it causes a decay of the Larmor precession to the stable
equilibrium of the spin. The equation of motion for the spin without coupling to the
light reduces to

Ṡ = −� ez × S + ηG

S
(Ṡ × S) ,

which is known as the Landau-Lifschitz-Gilbert equation. We have encountered this
equation before, abeit without the damping term.

We see hence that the light acts as a kind of effective magnetic field on the spin.
Actually, since the field a depends on time, and the spin-light dynamics is coupled,
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retardation effects cause also dissipation for the spin, in a similar way in which
an environment causes the dissipation term κ for the optical field. In the following
we will obtain the effective equation of motion for the spin induced by the light,
“integrating out” the light field. For that we have to resort to an approximation,
which is denominated the fast cavity limit, where the dynamics of the light is much
faster than that of the spin (sometimes it is also called the bad cavity limit, since it
implies that κ is large). That means that the photons spend in average a very short
time in the cavity, during which they “see” the spin almost as static.

The condition for the fast cavity limit to be valid isGṠx � κ2. In that case we can
expand the field a(t) in powers of Ṡx . We write a(t) = a0(t) + a1(t) + . . ., where
the subscript indicates the order in Ṡx . From the equation for a(t), we find that a0
fulfills the instantaneous equilibrium condition

a0(t) = κ

2
αmax

1
κ
2 − i (� − GSx (t))

, (6.30)

from which we obtain the correction a1:

a1(t) = − 1
κ
2 − i (� − GSx )

∂a0
∂Sx

Ṡx . (6.31)

To derive the effective equation of motion for the spin, we replace |a|2 ≈ |a0|2 +
a∗
1a0 + a∗

0a1 in Eq. 6.29 which leads to

Ṡ = Beff × S + ηopt

S
(Ṡx ex × S) + ηG

S
(Ṡ × S) . (6.32)

Here Beff = −�ez + Bopt, where Bopt(Sx ) = G|a0|2 ex is the purely static contri-
bution and acts as an optically induced magnetic field. The second term is due to
retardation effects, and it reminiscent of Gilbert damping, albeit with spin-velocity
component only along x̂ due to the chosen geometry. These are depicted in Fig. 6.2.
Both the induced field Bopt and dissipation coefficient ηopt depend explicitly on the
instantaneous value of Sx (t):

Bopt = G

[(κ
2 )

2 + (� − GSx )2]
(κ

2
αmax

)2
ex (6.33)

ηopt = −2GκS |Bopt| (� − GSx )

[(κ
2 )

2 + (� − GSx )2]2 . (6.34)

Thesefields are highlynon-linear functions of the spin.Note that the optically induced
dissipation can change sign! This leads to very interesting dynamics. Two distinct
solutions can be found: generation of new stable fixed points (switching) and opto-
magnonic limit cycles [16].
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Fig. 6.2 Optically induced
effective magnetic field Bopt
and dissipation coefficient
ηopt. Together with the
external applied magnetic
field, which controls the
Kittel mode frequency �,
they govern the nonlinear
dynamics of the macrospin S
on the Bloch sphere

Bloch sphere S

Macrospin

ex

ey

ez

Bopt

ηopt(S)

ezΩ-

1. Exercise: fill in the steps of the derivation above.

Check Points

• What is the fast cavity limit?
• How do you obtain an effective equation of motion for the spin, and what is the
meaning of each term?

6.5 Linearized Optomagnonic Hamiltonian

As we mentioned in Sect. 6.3, one can also treat the optomagnonic Hamiltonian in
the limit of small oscillations of the spins, by using a truncated Holstein Primakoff
expansion so that the spin ladder operators are replaced by linear bosonic operators.
This allows to study the behavior of the system beyond the homogeneous magnetic
Kittel mode studied in the previous two sections, but restricts the analysis to small
displacements of the spins with respect of their equilibrium positions.

In order to proceed with the linearization, we consider spin wave excitations on
top of a possibly nonuniform static ground state m0(r),

δm(r, t) = m(r, t) − m0(r) . (6.35)

For small deviations |δm| � 1 we can express these in terms of harmonic oscilla-
tors, which correspond to the magnon modes. This is equivalent to a local Holstein
Primakoff approximation. We can quantize the spin wave as

δm(r, t) → 1

2

∑
γ

[
δmγ(r)b̂γe

−iωγ t + δm∗
γ(r)b̂

†
γe

iωγ t
]

. (6.36)
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In turn, the quantization of the optical fields can be written as

E(r, t) → ∑
β Eβ(r)âβe−iωβ t (6.37)

E∗(r, t) → ∑
β E

∗
β(r)â†βe

iωβ t (6.38)

From Eq. 5.4.1 we obtain the coupling Hamiltonian linearized in the spin fluctua-
tions [20]

ĤMO =
∑
αβγ

Gαβγ â
†
αâβ b̂γ + h.c. (6.39)

where

Gαβγ = −i
θFλn

4π

ε0ε

2

∫
dr δmγ(r) · [E∗ (r) × Eβ (r)] (6.40)

is the optomagnonic coupling. Note that â correspond to photon operators, while b̂
correspond to magnonic ones. The Greek subindices indicate the respective magnon
and photon modes which are coupled. The information on the specific shape and
normalization of the magnon and optical modes is encoded in the respective mode
functions δmγ(r) andEα(r). Equations 6.39 and 6.40 allow to treat arbitrary geome-
tries for the optical cavity, arbitrary magnetic ground states, and arbitrary spin wave
modes.

The Hamiltonian in Eq. 6.39 is still nonlinear, since it involves products of three
bosonic operators. This Hamiltonian therefore still contains “interacting” three-
particle terms. In particular, it describes scattering processes in which a photon in
mode β and a magnon in mode γ are annihilated creating a photon in the mode α,
and the complementary process in which a photon α is annihilated creating a photon
β and a magnon γ. To bring this Hamiltonian into a solvable, quadratic form, we lin-
earize now the Hamiltonian Equation 6.39 in the optical fields. For that we consider
fluctuations of the optical fields around a steady state solution 〈âα〉, 〈âβ〉

âα = 〈âα〉 + δâα

âβ = 〈âβ〉 + δâβ . (6.41)

The steady state solutions 〈âα〉, 〈âβ〉 satisfy 〈 ˙̂aα〉 = 0, 〈 ˙̂aβ〉 = 0, where the time
evolution is given by the coupled equations of motion dictated by the interaction
Hamiltonian Eq. 6.39 plus driving and free terms, obtained by generalizing Eq. 6.28
to multiple modes. The average number of photons circulating in cavity mode α in
steady state is simply given by nα = |〈âα〉|2 and it is related to the input laser power.
To linear order in the fluctuations defined by Eqs. 6.41, the Hamiltonian Eq. 6.39
reduces to

Ĥlin =
∑
αβγ

Gαβγ

(√
nαδâβ b̂γ + √

nβδâ†αb̂γ

)
+ h.c. , (6.42)
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which is a Hamiltonian linear both in magnon and photon operators. It contains
two types of terms, denominated parametric amplifier, corresponding to those terms
which simultaneously create or annihilate a photon and amagnon (δâβ b̂γ and b̂†γδâ

†
β),

and beam splitter, which converts a photon into a magnon (b̂†γδâα), and vice-versa

(δâ†αb̂γ). Which of the two types of processes dominates depends on which of them
is in resonance, and can be tuned by the external laser driving. We note that the
optomagnonic coupling constant Gαβγ is enhanced by the square root of the number
of photons circulating in the corresponding cavity mode. This is similar to optome-
chanics, where light in an optical cavity couple to phonons [21].

6.6 Prospects in Cavity Optomagnonics

Cavity optomagnonic systems are the newest addition to a collection of platforms
being studied nowadays with the aim of manipulating, processing, and storing quan-
tum information. These systems, usually of nano and micro scale dimensions, are
called hybrid quantum systems [22], since they combine different degrees of freedom
(such as electronic, mechanical, photonic, or magnetic) to enhance functionality. For
example, whereas optical photons are good carriers of information, they are not so
good for information processing. Further examples of hybrid systems are nanoelec-
tromechanical or optomechanical systems. A general underlying property of these is
that they use collective excitations (such as phonons or magnons) whose properties
can be engineered by proper design at the nanoscale.

A challenge in many of these platforms is that the coupling between the different
degrees of freedom is weak, even taking into account the enhancement obtained
by the use of a cavity. Strong coupling, together with low losses, are required for
quantum information applications. This is because one should be able to process and
transfer information before it is lost to the environment. In particular for magnonic
systems, it has been shown that strong coupling to microwave photons is possible,
by using a microwave cavity [23–26]. Note that in this case the coupling is resonant,
meaning that the frequencies from both microwave and magnonic excitations can be
matched, being both in the GHz range. The magnons in this case couple directly to
the slow, oscillating magnetic field, as in ferromagnetic resonance experiments. We
have not discussed this coupling in these notes, but it can be shown it has the form

Ŝ+â† + Ŝ−â (6.43)

in terms of the spin ladder operators Ŝ± and themicrowave photons â. This interaction
converts a magnon into a photon and vice-versa. The optomagnonic coupling instead
is parametric in the photon fields (coupling instead to terms of the form â†â). This
is in general the case for non-resonant interactions, where the frequency mismatch
has to be accounted for (note that optical photons have frequencies of hundreds of
THz), and usually results in small intrinsic coupling values.
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The fact that magnons can couple coherently both to microwaves and to light
is however a big incentive to pursue the strong coupling regime also in the optical
domain. That would allow coherent transfer of information from the microwave
regime, where the information is usually processed (e.g. with superconducting qubits
[27]), to the telecom regime, where information can be communicated through long
distances and at room temperature with the help of optical fibers. We can expect that
the next few years will bring many exciting advances in this field.
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